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Abstract

In this document, I would like to give several proofs of the fun-
damental theorem of arithmetic, i.e., the uniqueness of prime factor-
ization of an integer.

0 Introduction

The fundamental theorem of arithmetic states that any positive integer is
a product of prime numbers in a unique way, apart from rearrangement of
primes. In other words, any positive integers n can be uniquely written
in the form n = pe11 pe22 · · · pekk , where e1, e2, . . . , ek are positive integers and
p1 < p2 < · · · < pk are primes numbers (for n = 1, we let k = 0).

In this document, I would like to give several proofs of this theorem.
But, these proofs give no information for prime factorization of an integer.
Indeed, it is unlikely that there exists a polynomial-time algorithm of prime
factorization. But no one has proved non-existence of polynomial-time al-
gorithm of prime factorization, which would imply P ̸= NP since prime
factorization is a NP-problem.

The existence of a prime factorization of an integer can be easily proved
by induction; assuming that any integer up from 2 to n can be factorized
into a product of primes, n + 1 is itself prime or can be factorized into a
product of two integers ab with 2 ≤ a, b ≤ n, both of which can be factorized
into a product of primes by the inductive assumption.

So that the interest lies on proofs of the uniqueness.

We begin by introducing the notation: gcd(a, b) denotes the greatest
common divisor of a and b, LCM[a, b] denotes the least common multiple
of a and b, a | b denotes that a divides b.
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1 Euclid’s lemma

A standard proof of the fundamental theorem of arithmetic uses Euclid’s
lemma, which is Proposition 30 of Euclid’s Element, Book 7 (for detail, see
the last section of this document).

Lemma 1.1 (Euclid’s lemma). Let a, b be two integers. If a prime p divides
ab, then p divides a or b.

Euclid’s lemma gives the fundamental theorem of arithmetic.

We begin by noting that Euclid’s lemma can be extended into the fact
that if p divides a product of k numbers a1a2 . . . ak, then p divides at least
one of ai’s. Indeed, p divides a product of k numbers a1a2 . . . ak, then p
divides a1a2 . . . ak−1 or ak by Euclid’s lemma. In the former case, we apply
Euclid’s lemma again and see that p divides a1a2 . . . ak−2 or ak−1. Iterating
this argument, we see that p divides a1, a2, . . . , ak−1 or ak.

In particular, if p divides a product of primes q1q2 . . . qk, then p must be
equal to at least one of qi’s.

Now, let n be the smallest positive integer which can be factorized into
primes more than one way and p be the smallest primes appearing in a fac-
torization of n. We see that p cannot appear in another factorization since,
otherwise, n/p < n must have more than one way of prime factorization.
But this contradicts to the above-mentioned fact (revised in Jun. 4. 2019).
This proves the uniqueness of prime factorization.

(Added in Jun. 4. 2019) We note that Euclid’s lemma easily yields its
dual result: If a, b are relatively prime integers dividing n, the the product
ab also divides n. Since a divides n, we can write n = am with m an integer.
Then, since b is an integer relatively prime to a dividing n = am, Euclid’s
lemma yields that b divides m. Writing m = lb, we have n = am = abl.
Thus, ab divides n.

2 Bezout’s identity

There exists several proofs of Euclid’s lemma. A standard one is to use
Bezout’s identity, which is used in [1].

Lemma 2.1 (Bezout’s identity). For any integers m,n, there exist two
integers a, b such that am+ bn = gcd(m,n).
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We begin by showing the following lemma, which is [1, Theorem 23].

Lemma 2.2. Let l be the smallest positive integer of the form am+ bn with
a, b integers. Then any integer of the form am + bn with a, b integers is a
multiple of l.

Proof. Let k = cm+dn with c, d integers and divide k by l with the quotient
q and the remainder r, i.e., k = ql + r with 0 ≤ r < l. Now, writing
l = a0m + b0n with a0, b0 integers, we have r = k − ql = (cm + dn) −
q(a0m + b0n) = (c − qa0)m + (d − qb0)n and therefore r has also the form
am+ bn with a, b integers. But, since 0 ≤ r < l, the only possibility is that
r = 0. Hence k = ql is a multiple of l.

Now we can see that l = gcd(m,n) (Theorem 24 of [1]), observing that
l is a common divisor of m = 1 × m + 0 × n and n = 0 × m + 1 × n
but l = am + bn must be a multiple of gcd(m,n) since both m and n are
multiples of gcd(m,n). Hence Bezout’s identity follows.

We shall prove the following generalization of Euclid’s lemma.

Lemma 2.3. Let m,n be two integers. If n | km, then k is a multiple of
n/ gcd(m,n).

Proof. By Bezout’s identity there exists some integers a, b such that am +
bn = gcd(m,n) and therefore k gcd(m,n) = akm + bkn. Since n | km,
k gcd(m,n) = a(km) + bkn is a multiple of n and therefore k is a multiple
of n/ gcd(m,n).

In particular, if p is a prime and a is not divisible by p, then gcd(a, p) = 1
and therefore, if p | ab, then p = p/ gcd(a, p) | b, which proves Euclid’s
lemma.

The proof of Euclid’s lemma via Bezout’s identity is a special case of
a series of theorems concerning the uniqueness of prime factorization in
general integral domains: any Euclidean domain is a Noetherian Bezout
domain, any Bezout domain is a gcd domain, any gcd domain is a Schreier
domain and any atomic (any Noetherian domain is atomic) Screier domain
is a UFD.
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3 Bezout’s identity via Euclidean algorithm

Another proof of Bezout’s identity uses Euclidean algorithm which is used
to calculate gcd(m,n) for given positive integers m,n; let a0 = m, a1 = n
and define new an recursively by dividing an−2 by an−1 with the quotient
qn−1 and the remainder an. an to be the remainder of an−2 divided by
an−1 recursively until we have an index l with al = 0. Then we have
al−1 = gcd(m,n). We see that a2 = m − q1n, a3 = n − q2a2, . . . , al−2 =
al−4 − ql−3al−3 and gcd(m,n) = al−1 = al−3 − ql−2al−2 can be represented
in the form am+ bn with a, b integers.

4 LCM-gcd theory

Some proofs of Euclid’s lemma use theory of least common multiples and
greatest common divisors. The following lemma is [5, Theorem 1.3] and [4,
Theorem 1.4.1].

Lemma 4.1. Any common multiple of a and b is a multiple of LCM(a, b).

Proof. Let n be an arbitrary common multiple of a and b and divide n by
LCM(a, b) with the quotient q and the remainder r, i.e., n = q LCM(a, b)+r
with 0 ≤ r < LCM(a, b). Now r = n−q LCM(a, b) is also a common multiple
of a and b. But since 0 ≤ r < LCM(a, b), the only possibility is that r = 0,
i.e., n is a multiple of LCM(a, b).

This lemma has the following dual, which means that the ordinary gcd
satisfies the definition of the gcd in general commutative rings (In a com-
mutative ring R, a gcd of a, b ∈ R is defined to be a common divisor of
a, b which is divisible by any other common divisor of a, b), i.e. the ring of
(rational) integers are gcd domain.

Lemma 4.2. Any common divisor of a and b divides gcd(a, b).

Proof. Let n be a common divisor of a and b and l = LCM[n, gcd(a, b)].
Since both of n and gcd(a, b) divide both a and b, a and b are common
multiples of n and gcd(a, b). Now the previous lemma gives that both of a
and b are multiples of l = LCM[n, gcd(a, b)]. Hence l is a common divisor
of a and b. We see that gcd(a, b) ≤ l ≤ gcd(a, b) and therefore l = gcd(a, b),
which is a multiple of n and therefore n divides gcd(a, b).

The following lemma is used in [5].
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Lemma 4.3. Let m,n are positive integers. If L = LCM[m,n] and d =
gcd(m,n), then we have mn = dL.

Proof. Since mn/d = m(n/d) = n(m/d) is a common multiple of m and n,
Lemma 4.1 gives that mn/d is a multiple of L, i.e., dL | mn. On the other
hand, since mn/L = m/(L/n) = n/(L/m) is a common divisor of m and n,
Lemma 4.2 gives that mn/L divides d, i.e., mn | dL.

Now we have mn | dL | mn and therefore mn = dL.

Indeed, for the proof of Euclid’s lemma, it suffices to prove the following
lemma.

Lemma 4.4. For a prime p and a positive integer a not divisible by p, we
have LCM[a, p] = ap.

Proof. Since a divides LCM[a, p] and, by Lemma 4.1, LCM[a, p] divides ap,
we have LCM[a, p] = a or LCM[a, p] = ap. But, since a is not a multiple of
p, we must have LCM[a, p] = ap.

Now Euclid’s lemma can be proved. If p divides ab but not a, then the
above lemma gives that LCM[a, p] = ap. Since ab is a common multiple of
a and p, Lemma 4.1 gives ab is a multiple of LCM[a, p] = ap, i.e., b is a
multiple of p as stated in Euclid’s lemma.

[4, Theorem 1.4.3] has a similar but slightly different use of greatest
common divisors.

Lemma 4.5. If a divides bc and gcd(a, b) = 1, then a divides c.

Proof. Since a divides bc, we have a = gcd(a, bc). Since gcd(a, b) = 1, we
have c = gcd(a, b)c and therefore gcd(a, c) = gcd(a, gcd(a, b)c). Now, if
we can show gcd(a, bc) = gcd(a, gcd(a, b)c), then we have a = gcd(a, bc) =
gcd(a, gcd(a, b)c) = gcd(a, c) and therefore a | c as desired.

Henceforth we shall show that gcd(a, bc) = gcd(a, gcd(a, b)c).

If l is a common divisor of a and gcd(a, b)c, then l | gcd(a, b)c | bc and
therefore l is a common divisor of a and bc. So that gcd(a, gcd(a, b)c) ≤
gcd(a, bc).

Let d = gcd(a, bc). Now d | a | ac and therefore d is a common divisor
of ac and bc. Since ac and bc are a common multiple of c and d, we have
LCM[c, d] , as well as c and d, is a common divisor of ac and bc. Denoting
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LCM[c, d] = ck, we have k is a common dividor of a and b and therefore
k | gcd(a, b) by Lemma 4.2. So that LCM[c, d] = ck divides gcd(a, b)c and
therefore d is also a divisor of gcd(a, b)c. Hence d is a common divisor of a
and gcd(a, b)c. But, since d ≥ gcd(a, gcd(a, b)c) as shown above, we have
d = gcd(a, gcd(a, b)c).

5 Another proof of Euclid’s lemma

Another simple proof of Euclid’s lemma is given in [2].

Lemma 5.1. Let a, b be two integers and k0 be the smallest positive integer
such that k0a is a multiple of b. If ka is a multiple of b, then k is a multiple
of k0.

Proof. We shall divide k by k0 with the quotient q and the remainder r,
i.e., Then ra = (k − qk0)a = ka − qk0a is also a multiple of b. But since
0 ≤ r < k0, the only possibility is that r = 0, i.e., k is a multiple of k0.

Now we have another proof of Lemma 2.3, which gives Euclid’s lemma.

Lemma 5.2. k0 = b/ gcd(a, b).

Proof. We begin by noting that we can always take k = b in the situation
given in the previous lemma; ba is clearly a multiple of b. So that k0 divides
b.

Now let b = d0k0 and k0a = n0b. Then we have a = n0d0 and threfore
d0 is a common divisor of a and b. For any common divisor d of a and b,
(b/d)a = ab/d = a(b/d) is a multiple of a and therefore b/d is a multiple of
k0, i.e., d divides b/k0 = d0. So that d = gcd(a, b) and k0 = b/ gcd(a, b).

(Added in Jun. 4. 2019) Now we proved Euclid’s lemma without Be-
zout’s identity. We note that we can also derive Bezout’s identity from
Lemma 5.2.

Let uk(k = 0, 1, . . .) be the remainder when ka is divided by b. We
observe that uk(0 ≤ k ≤ k0 − 1) take different values. Indeed, if uk =
ul(0 ≤ k ≤ l ≤ k0 − 1), (l − k)a is a multiple of b and k − l must be a
multiple of b by Lemma 5.2 but, since 0 ≤ l − k ≤ k0 − 1, we must have
k = l.
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Now uk(0 ≤ k ≤ k0−1) take k0 different values. But, uk(0 ≤ k ≤ k0−1)
must take one of the k0 = b/ gcd(a, b) values 0, gcd(a, b), . . . , (k0−1) gcd(a, b)
since ka− lb must be a multiple of gcd(a, b). This means that uk(0 ≤ k ≤
k0 − 1) take each of these k0 values exactly once. In particular, there exists
an index k such that uk = gcd(a, b). In other words, there exist integers k, l
such that ka− lb = gcd(a, b). This proves Bezout’s identity.

6 A direct proof

A direct proof of the fundamental theorem of arithmetic is given in Section
2.11 of [1]. Let n be the smallest positive integer which can be factorized
into primes more than one way. Let p be the smallest primes appearing in a
factorization of n and q be the smallest primes appearing in another factor-
ization of n. We see that p cannot appear in the second factorization since,
otherwise, n/p < n must have more than one way of prime factorization.
In particular, p ̸= q.

Since a prime clearly has only one way of prime factorization, n must
be composite. So that p2 ≤ n and q2 ≤ n. Since p ̸= q, we have pq < n.

Let N = n − pq. Then we have 0 < N < n and therefore N has a
unique factorization. Since both of p and q divides N = n−pq, both primes
appear the factorization of N . So that N must be divisible by pq and so
must n = N + pq. Thus n/q must be disibile by p. But, since n/q < n
has a unique factorization, p must appear in the prime factorization of n/q.
Hence p must also appear in the second factorization of n, contrary to the
above-mentioned fact that p cannot appear in the second factorization.

Thus there never exists smallest positive integer which can be factorized
into primes more than one way, proving the uniqueness of prime factoriza-
tion of integers.

7 Euclid’s proof

It is known that Euclid does not use his algorithms to prove Euclid’s lemma,
by which Book 7 begins and Euclid’s proof of his lemma in Book 7 has a
serious gap. But the matter is not so simple. We would like to recommend
to read [3] for detail. Euclid’s proof needs the propositions 7.19 and 7.20:
Proposition 7.19 states that a : b = c : d if and only if ad = bc. Proposition
7.20 states that if (a, b) is the smallest positive integral pair with the ratio
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a : b and a : b = c : d, then c = an and d = an for some integer n.

Euclid proves Proposition 7.20 by taking a = c(m/n), b = d(m/n) with
m,n integers, m ≥ 2 and n | c, and stating that (a/m) : (b/m) = (c/n) :
(d/n) = c : d, which contradicts that (a, b) is the smallest pair with this
ratio.

It seems to be easily pointed that n is not confirmed to divide d. How-
ever, it must be noted that, in Book 7, Euclid calls that a : b and c : d
are proportional if and only if there exists a quadruple of integers m,n, x, y
such that (a, b, c, d) = (mx, nx,my, ny) (In Book 5, Euclid uses the ordinary
definition).

However, under this definition, the proof of Proposition 7.19 must be
checked. Euclid derives a : b = c : d from ad : bd = a : b and bc : bd = c : d.
But, under Euclid’s definition, the transitivity is not trivial.
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