Almost Lehmer numbers

Tomohiro Yamada (CJLC, Osaka University)

Nov. 27. 2020 (revised in Dec. 7. 2020)

Introduction

Preliminary Estimates

Proof of theorems

$2 / 195$

Introduction

Let

$\varphi(n)$: the Euler totient of n, the number of positive integers $d \leq n-1$ coprime to n.

Clearly, $\varphi(n)=n-1$ if and only if n is prime.

Conjecture (Lehmer, 1932)

There exists no composite n such that

Introduction

Let
$\varphi(n)$: the Euler totient of n, the number of positive integers $d \leq n-1$ coprime to n.
Clearly, $\varphi(n)=n-1$ if and only if n is prime.

Conjecture (Lenmer, 1932)

There exists no composite n such that

Introduction

Let
$\varphi(n)$: the Euler totient of n, the number of positive integers
$d \leq n-1$ coprime to n.
Clearly, $\varphi(n)=n-1$ if and only if n is prime.
Conjecture (Lehmer, 1932)
There exists no composite n such that

$$
\begin{equation*}
\varphi(n) \mid(n-1) . \tag{1}
\end{equation*}
$$

Lehmer proved that:

Lenmer, 1932

If n is composite and $\varphi(n)$ divides $n-1$, then n must
(a) be odd,
(b) be squarefree, and
(c) have at least seven prime factors.

Lehmer proved that:
Lehmer, 1932
If n is composite and $\varphi(n)$ divides $n-1$, then n must
(b) be squarefree, and
(c) have at least seven prime factors.

Lehmer proved that:

Lehmer, 1932

If n is composite and $\varphi(n)$ divides $n-1$, then n must (a) be odd,
(b) be squarefree, and
(c) have at least seven prime factors.

Lehmer proved that:

Lehmer, 1932

If n is composite and $\varphi(n)$ divides $n-1$, then n must (a) be odd,
(b) be squarefree, and
(c) have at least seven prime factors.

Lehmer proved that:

Lehmer, 1932

If n is composite and $\varphi(n)$ divides $n-1$, then n must
(a) be odd,
(b) be squarefree, and
(c) have at least seven prime factors.

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{2^{r}}$ if
$2 \leq \omega(n) \leq r$ additionally.
Luca and Pomerance, 2011: $V(x)<x^{1 / 2} \log ^{-1 / 2+o(1)} x$.
Burek and Żmija, 2016: $n \leq 2^{2^{r}}-2^{2^{r-1}}$ if $2 \leq \omega(n) \leq r$
additionally.

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Voreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{2^{r}}$ if
$2 \leq \omega(n) \leq r$ additionally.
Luca and Pomerance, $2011 . V(x)<x^{1 / 2} \log ^{-1 / 2+o(1)} x$.
Burek and Żmija, 2016: $n \leq 2^{2^{r}}-2^{2 r^{-1}}$ if $2 \leq \omega(n) \leq r$
additionally.

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{2^{+}}$if
$2 \leq \omega(n) \leq r$ additionally.
Luca and Pomerance, 2011: $V(x)<x^{1 / 2} \log ^{-1 / 2+o(1)} x$.
Burek and Żmija, 2016: $n \leq 2^{2^{r}}-2^{2^{r-1}}$ if $2 \leq \omega(n) \leq r$
additionally.

13/195

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{22}$ if
$2 \leq \omega(n) \leq r$ additionally.
Luca and Pomerance, 2011: $V(x)<x^{1 / 2} \log ^{-1 / 2+o(1)} x$.
Burek and Żmija, 2016: $n \leq 2^{2^{r}}-2^{2^{r-1}}$ if $2 \leq \omega(n) \leq r$
additionally.

14/195

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{2^{r}}$ if
$2 \leq \omega(n) \leq r$ additionally.

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{2^{r}}$ if
$2 \leq \omega(n) \leq r$ additionally.
Luca and Pomerance, 2011: $V(x)<x^{1 / 2} \log ^{-1 / 2+o(1)} x$.

Further results

Cohen and Hagis, 1980: $\omega(n) \geq 14$ and $n>10^{20}$.
Renze's notebook: $\omega(n) \geq 15$ and $n>10^{26}$.
Pinch claims at his research page: $n>10^{30}$.
Moreover, letting $V(x)$ be the number of composites $n \leq x$ such that $\varphi(n) \mid(n-1)$,

Pomerance, 1977: $V(x)=O\left(x^{1 / 2} \log ^{3 / 4} x\right)$ and $n \leq r^{2^{r}}$ if
$2 \leq \omega(n) \leq r$ additionally.
Luca and Pomerance, 2011: $V(x)<x^{1 / 2} \log ^{-1 / 2+o(1)} x$.
Burek and Żmija, 2016: $n \leq 2^{2^{r}}-2^{2 r-1}$ if $2 \leq \omega(n) \leq r$ additionally.

Weakening the condition $\varphi(n) \mid(n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property:

The first few composite 2-Lehmer numbers:

$$
561,1105,1729,2465,
$$

(sequence A173703 in OEIS)

Weakening the condition $\varphi(n) \mid(n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid(n-1)^{k}$
$561,1105,1729,2465$,
(sequence A173703 in OEIS).

Weakening the condition $\varphi(n) \mid(n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid(n-1)^{k}$ The first few composite 2-Lehmer numbers:

561, 1105, 1729, 2465,

(sequence A173703 in OEIS)

Weakening the condition $\varphi(n) \mid(n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid(n-1)^{k}$ The first few composite 2-Lehmer numbers:

$$
561,1105,1729,2465, \ldots
$$

(sequence Al73703 in OEIS).

Weakening the condition $\varphi(n) \mid(n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid(n-1)^{k}$ The first few composite 2-Lehmer numbers:

$$
561,1105,1729,2465, \ldots
$$

(sequence $\underline{\text { A173703 }}$ in OEIS).

Following estimates are known:

> McNew, 2013
> For each k, the number of k-Lehmer composites is $O\left(x^{1-1 /(4 k-1)}\right)$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp (-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

For each $k>3$ there exist at least $x^{1 /(k-1)+o(1) ~ i n t e g e r s ~} n \leq x$
which are k-Lehmer but not ($k-1$)-Lehmer numbers.

25 / 195

Following estimates are known:

McNew, 2013

For each k, the number of k-Lehmer composites is $O\left(x^{1-1 /(4 k-1)}\right)$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp (-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

For each $k \geq 3$, there exist at least $x^{1 /(k-1)+o(1)}$ integers $n \leq x$
which are k-Lehmer but not $(k-1)$-Lehmer numbers.

Following estimates are known:

McNew, 2013

For each k, the number of k-Lehmer composites is $O\left(x^{1-1 /(4 k-1)}\right)$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp (-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

For each $k \geq 3$, there exist at least $x^{1 /(k-1)+o(1)}$ integers $n \leq x$
which are k-Lehmer but not $(k-1)$-Lehmer numbers.

Following estimates are known:

McNew, 2013

For each k, the number of k-Lehmer composites is $O\left(x^{1-1 /(4 k-1)}\right)$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp (-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

For each $k \geq 3$, there exist at least $x^{1 /(k-1)+o(1)}$ integers $n \leq x$ which are k-Lehmer but not $(k-1)$-Lehmer numbers.

Nearly and almost Lehmer numbers

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

We call an integer n to be
(a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$, and
(b) an r-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.

Nearly and almost Lehmer numbers

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

> Almost Lenmer numbers
> We call an integer n to be
> (a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$, and
> (b) an r-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.

Nearly and almost Lehmer numbers

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

We call an integer n to be
(a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$, and
b) an r-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.

Nearly and almost Lehmer numbers

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

We call an integer n to be
(a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$, and
(b) an r-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.

Nearly and almost Lehmer numbers

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

We call an integer n to be
(a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$, and
(b) an r-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are
$1729,12801,247105,1224721,2704801,5079361,8355841$,
given in A337316.
- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361,34479361 , and 3069196417 below 2^{32} (further instances are given in the discussion of A338998).

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are
$1729,12801,247105,1224721,2704801,5079361,8355841$,
given in A337316.
- There exist exactly 38 almost Lehmer composites below 2^{32}
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361,34479361 , and 3069196417 below 2^{32} (further instances are given in the discussion of A338998).

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361,34479361 , and 3069196417 below 2^{32} (further instances are given in the discussion of A338998).

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites
are given in the discussion of A338998)

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729,
are given in the discussion of A338998)

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801,
are given in the discussion of A338998)

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361,
are given in the discussion of A338998)

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361,
are given in the discussion of A338998).

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361,34479361 , and 3069196417 below 2^{32} are given in the discussion of A338998)

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

$$
1729,12801,247105,1224721,2704801,5079361,8355841, \ldots,
$$

given in A337316.

- There exist exactly 38 almost Lehmer composites below 2^{32}.
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361,34479361 , and 3069196417 below 2^{32} (further instances are given in the discussion of A338998).

We use the following notion:

- U_{r} : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.
- Thus, U_{∞} denotes the set of almost I ehmer composite numbers.
- $S(x)=\{n \leq x, n \in S\}$:

We use the following notion:

- U_{r} : the set of composites n for which some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.
- Thus, U_{∞} denotes the set of almost Lehmer composite numbers.
- $S(x)=\{n \leq x, n \in S\}$:

We use the following notion:

- U_{r} : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.
- Thus, U_{∞} denotes the set of almost Lehmer composite numbers.
- $S(x)=\{n \leq x, n \in S\}$:

We use the following notion:

- U_{r} : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.
- Thus, U_{∞} denotes the set of almost Lehmer composite numbers.

We use the following notion:

- U_{r} : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of $n-1$ with $\omega(\ell) \leq r$.
- Thus, U_{∞} denotes the set of almost Lehmer composite numbers.
- $S(x)=\{n \leq x, n \in S\}$:

Main results

Theorem 1 (Y., submitted)

Let a_{r} be the number of partitions of the multiset
$\{1,1,2,2, \ldots, r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_{1} such that, for each $r \geq 1$,

$$
\begin{equation*}
\# U_{r}(x)<c a_{r}(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} . \tag{2}
\end{equation*}
$$

Theorem 2 (Y., submitted)

$$
\begin{equation*}
\# U_{\infty}(x)<x^{4 / 5} \exp \left(\left(\frac{4}{5}+o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right) \tag{3}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.

Main results

Theorem 1 (Y., submitted)

Let a_{r} be the number of partitions of the multiset $\{1,1,2,2, \ldots, r, r\}$ of r integers repeated twice. Then, there exist
two absolute constants c and c_{1} such that, for each $r \geq 1$,

Theorem 2 (Y., submitted)

where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.

Main results

Theorem 1 (Y., submitted)

Let a_{r} be the number of partitions of the multiset $\{1,1,2,2, \ldots, r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_{1} such that, for each $r \geq 1$,

where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.

Main results

Theorem 1 (Y., submitted)

Let a_{r} be the number of partitions of the multiset $\{1,1,2,2, \ldots, r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_{1} such that, for each $r \geq 1$,

$$
\begin{equation*}
\# U_{r}(x)<c a_{r}(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} . \tag{2}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.

Main results

Theorem 1 (Y., submitted)

Let a_{r} be the number of partitions of the multiset $\{1,1,2,2, \ldots, r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_{1} such that, for each $r \geq 1$,

$$
\begin{equation*}
\# U_{r}(x)<c a_{r}(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} . \tag{2}
\end{equation*}
$$

Theorem 2 (Y., submitted)

$$
\begin{equation*}
\# U_{\infty}(x)<x^{4 / 5} \exp \left(\left(\frac{4}{5}+o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right) \tag{3}
\end{equation*}
$$

Where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.
53 / 195

Main results

Theorem 1 (Y., submitted)

Let a_{r} be the number of partitions of the multiset $\{1,1,2,2, \ldots, r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_{1} such that, for each $r \geq 1$,

$$
\begin{equation*}
\# U_{r}(x)<c a_{r}(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} . \tag{2}
\end{equation*}
$$

Theorem 2 (Y., submitted)

$$
\begin{equation*}
\# U_{\infty}(x)<x^{4 / 5} \exp \left(\left(\frac{4}{5}+o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right) \tag{3}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.

The first terms of $a_{r}{ }^{\prime}$ s are $2,9,66,712,10457,198091,4659138,132315780, \ldots$ given in A020555 and Bender's asymptotic formula (Bender, 1974) yields that

$$
\begin{equation*}
\log a_{r}<2 r\left(\log (2 r)-\log \log (2 r)-1-\frac{\log 2}{2}+o(1)\right) \tag{4}
\end{equation*}
$$

The first terms of $a_{r}{ }^{\prime}$ s are

$2,9,66,712,10457,198091,4659138,132315780, \ldots$ given in A020555 and Bender's asymptotic formula (Bender, 1974) yields that

The first terms of $a_{r}{ }^{\prime}$ s are

$$
2,9,66,712,10457,198091,4659138,132315780, \ldots
$$

given in A020555 and Bender's asymptotic formula (Bender, 1974) yields that
as r grows.

The first terms of $a_{r}{ }^{\prime}$ s are

$$
2,9,66,712,10457,198091,4659138,132315780, \ldots
$$

given in A020555 and Bender's asymptotic formula (Bender, 1974) yields that

$$
\begin{equation*}
\log a_{r}<2 r\left(\log (2 r)-\log \log (2 r)-1-\frac{\log 2}{2}+o(1)\right) \tag{4}
\end{equation*}
$$

as r grows.

Hence, setting c and c_{1} as in Theorem 1, we obtain

$$
\# U_{1}(x)<2 c(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3}
$$

Hence, setting c and c_{1} as in Theorem 1, we obtain

$$
\begin{equation*}
\# U_{1}(x)<2 c(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} \tag{5}
\end{equation*}
$$

and
where $o_{r}(1)$ does not depend to x and tends to zero as r tends to infinity.

Hence, setting c and c_{1} as in Theorem 1, we obtain

$$
\begin{equation*}
\# U_{1}(x)<2 c(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\# U_{r}(x)<c\left(\frac{\left(e \sqrt{2}+o_{r}(1)\right) r}{\log r}\right)^{2 r}(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} \tag{6}
\end{equation*}
$$

where $o_{r}(1)$ does not depend to x and tends to zero as r tends to infinity.

Hence, setting c and c_{1} as in Theorem 1, we obtain

$$
\begin{equation*}
\# U_{1}(x)<2 c(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\# U_{r}(x)<c\left(\frac{\left(e \sqrt{2}+o_{r}(1)\right) r}{\log r}\right)^{2 r}(x \log x)^{2 / 3}\left(c_{1} \log \log x\right)^{2 r+2 / 3} \tag{6}
\end{equation*}
$$

where $o_{r}(1)$ does not depend to x and tends to zero as r tends to infinity.

Our estimates depend on numbers of multiplicative partitions of integers, which will be discussed in the next section.
This dependence, together with factorial growth of a_{r}, prevents our method from showing that $\# U$

Our estimates depend on numbers of multiplicative partitions of integers, which will be discussed in the next section. This dependence, together with factorial growth of a_{r}, prevents our method from showing that $\# U_{\infty}(x)<x^{2 / 3+o(1)}$.

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Le'inmer
composite numbers (it may occur that $\# U_{1}(x) \gg \log x$), although
such integers are distributed very rarely below our search limit. However, these also seem to be difficult to prove or disprove; it is even not known whether there exist infinitely many 2-Lehmer numbers or not!

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Lehmer composite numbers (it may occur that $\# U_{1}(x) \gg \log x$), although such integers are distributed very rarely below our search limit. However, these also seem to be difficult to prove or disprove; it is even not known whether there exist infinitely many 2-Lehmer numbers or not!

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Lehmer composite numbers
such integers are distributed very rarely below our search limit However, these also seem to be difficult to prove or disprove; it is even not known whether there exist infinitely many 2-Lehmer numbers or not!

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Lehmer composite numbers (it may occur that $\# U_{1}(x) \gg \log x$), such integers are distributed very rarely below our search limit. However, these also seem to be difficult to prove or disprove; it is even not known whether there exist infinitely many 2-Lehmer numbers or not!

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Lehmer composite numbers (it may occur that $\# U_{1}(x) \gg \log x$), although such integers are distributed very rarely below our search limit.
even not known whether there exist infinitely many 2-Lehmer
numbers or not!

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Lehmer composite numbers (it may occur that $\# U_{1}(x) \gg \log x$), although such integers are distributed very rarely below our search limit. However, these also seem to be difficult to prove or disprove; numbers or not!

On the other hand, the above instances lead us to:

Conjecture

There exist infinitely many almost Lehmer composite numbers.
Moreover, there may be infinitely many 1-nearly Lehmer composite numbers (it may occur that $\# U_{1}(x) \gg \log x$), although such integers are distributed very rarely below our search limit. However, these also seem to be difficult to prove or disprove; it is even not known whether there exist infinitely many 2 -Lehmer numbers or not!

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\},\left\{p_{2}^{2}, p_{1}, p_{1}\right\},\left\{p_{1} p_{2}, p_{1} p_{2}\right\},\left\{p_{1} p_{2}, p_{1}, p_{2}\right\}$, $\left\{p_{1}, p_{1}, p_{2}, p_{2}\right\}$.

72 / 195

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$. The values of $\tau(s)$ for positive integers s are given in A001055.

73 / 195

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

74 / 195

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations:

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in $\underline{\text { A001055. }}$

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\},\left\{p_{2}^{2}, p_{1}, p_{1}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\},\left\{p_{2}^{2}, p_{1}, p_{1}\right\},\left\{p_{1} p_{2}, p_{1} p_{2}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\},\left\{p_{2}^{2}, p_{1}, p_{1}\right\},\left\{p_{1} p_{2}, p_{1} p_{2}\right\},\left\{p_{1} p_{2}, p_{1}, p_{2}\right\}$,

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\},\left\{p_{2}^{2}, p_{1}, p_{1}\right\},\left\{p_{1} p_{2}, p_{1} p_{2}\right\},\left\{p_{1} p_{2}, p_{1}, p_{2}\right\}$, $\left\{p_{1}, p_{1}, p_{2}, p_{2}\right\}$.

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s=s_{1} s_{2} \cdots s_{r}$ with $s_{1} \leq s_{2} \leq \cdots s_{r}$.
The values of $\tau(s)$ for positive integers s are given in A001055.

If $s=p_{1}^{2} p_{2}^{2}$, then there exist nine factorizations: $\left\{p_{1}^{2} p_{2}^{2}\right\},\left\{p_{1}^{2} p_{2}, p_{2}\right\}$, $\left\{p_{1} p_{2}^{2}, p_{1}\right\},\left\{p_{1}^{2}, p_{2}^{2}\right\},\left\{p_{1}^{2}, p_{2}, p_{2}\right\},\left\{p_{2}^{2}, p_{1}, p_{1}\right\},\left\{p_{1} p_{2}, p_{1} p_{2}\right\},\left\{p_{1} p_{2}, p_{1}, p_{2}\right\}$, $\left\{p_{1}, p_{1}, p_{2}, p_{2}\right\}$.

We prove two lemmas. Lemma 1 uses

Erdǒs, Granvile, Pomerance, and Spiro, 1990, (3.1)

with some absolute constant c_{1}, where q runs over all primes satisfying $q \leq x, q \equiv 1(\bmod s)$.
and Lemma 2 uses

$$
\begin{equation*}
\sum_{s \leq x} \tau(s)=\frac{(1+o(1)) x e^{2 \sqrt{\log x}}}{2 \sqrt{\pi} \log ^{3 / 4} x} \tag{8}
\end{equation*}
$$

We prove two lemmas. Lemma 1 uses

Erdös, Granville, Pomerance, and Spiro, 1990, (3.1)

with some absolute constant c_{1}, where q runs over all primes

 satisfying $q \leq x, q \equiv 1(\bmod s)$.and Lemma 2 uses

87 / 195

We prove two lemmas. Lemma 1 uses

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$
\begin{equation*}
\sum_{q \leq x, q \equiv 1(\bmod s)} \frac{1}{q}<\frac{c_{1} \log \log x}{s} \tag{7}
\end{equation*}
$$

We prove two lemmas. Lemma 1 uses

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$
\begin{equation*}
\sum_{q \leq x, q \equiv 1(\bmod s)} \frac{1}{q}<\frac{c_{1} \log \log x}{s} \tag{7}
\end{equation*}
$$

with some absolute constant c_{1}, where q runs over all primes
and Lemma 2 uses

We prove two lemmas. Lemma 1 uses

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$
\begin{equation*}
\sum_{q \leq x, q \equiv 1(\bmod s)} \frac{1}{q}<\frac{c_{1} \log \log x}{s} \tag{7}
\end{equation*}
$$

with some absolute constant c_{1}, where q runs over all primes satisfying $q \leq x, q \equiv 1(\bmod s)$.
and Lemma 2 uses

We prove two lemmas. Lemma 1 uses

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$
\begin{equation*}
\sum_{q \leq x, q \equiv 1(\bmod s)} \frac{1}{q}<\frac{c_{1} \log \log x}{s} \tag{7}
\end{equation*}
$$

with some absolute constant c_{1}, where q runs over all primes satisfying $q \leq x, q \equiv 1(\bmod s)$.
and Lemma 2 uses

We prove two lemmas. Lemma 1 uses

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$
\begin{equation*}
\sum_{q \leq x, q \equiv 1(\bmod s)} \frac{1}{q}<\frac{c_{1} \log \log x}{s} \tag{7}
\end{equation*}
$$

with some absolute constant c_{1}, where q runs over all primes satisfying $q \leq x, q \equiv 1(\bmod s)$.
and Lemma 2 uses
Oppenheim, 1927

$$
\begin{equation*}
\sum_{s \leq x} \tau(s)=\frac{(1+o(1)) x e^{2 \sqrt{\log x}}}{2 \sqrt{\pi} \log ^{3 / 4} x} \tag{8}
\end{equation*}
$$

Lemma 1
For each integer $s \geq 1$, let $S(s ; x)$ denote the set of positive integers $n \leq x$ such that s divides $\varphi(n)$.

Lemma 1
For each integer $s \geq 1$, let $S(s ; x)$ denote the set of positive integers $n \leq x$ such that s divides $\varphi(n)$. Then

Lemma 1

For each integer $s \geq 1$, let $S(s ; x)$ denote the set of positive integers $n \leq x$ such that s divides $\varphi(n)$. Then

$$
\begin{equation*}
S(s ; x) \leq \frac{\tau(s) x\left(c_{1} \log \log x\right)^{\Omega(s)}}{s} \tag{9}
\end{equation*}
$$

Lemma 1

For each integer $s \geq 1$, let $S(s ; x)$ denote the set of positive integers $n \leq x$ such that s divides $\varphi(n)$. Then

$$
\begin{equation*}
S(s ; x) \leq \frac{\tau(s) x\left(c_{1} \log \log x\right)^{\Omega(s)}}{s} \tag{9}
\end{equation*}
$$

where c_{1} is an absolute constant.

We observe that if $s \mid \varphi(n)$, then we can take a factorization of $s=s_{1} s_{2} \cdots s_{t+1}$ with $1<s_{1}<s_{2}<\cdots s_{t}$ such that:

We observe that if $s \mid \varphi(n)$, then we can take a factorization of $s=s_{1} s_{2} \cdots s_{t+1}$ with $1<s_{1}<s_{2}<\cdots s_{t}$ such that:

$$
q_{i} \equiv 1\left(\bmod s_{i}\right) \text { for } i=1,2, \ldots, t
$$

We observe that if $s \mid \varphi(n)$, then we can take a factorization of $s=s_{1} s_{2} \cdots s_{t+1}$ with $1<s_{1}<s_{2}<\cdots s_{t}$ such that:

$$
q_{i} \equiv 1\left(\bmod s_{i}\right) \text { for } i=1,2, \ldots, t
$$

s_{t+1} divides $q_{1}^{f_{1}-1} q_{2}^{f_{2}-1} \cdots q_{t}^{f_{t}-1}$, and

We observe that if $s \mid \varphi(n)$, then we can take a factorization of $s=s_{1} s_{2} \cdots s_{t+1}$ with $1<s_{1}<s_{2}<\cdots s_{t}$ such that:

$$
q_{i} \equiv 1\left(\bmod s_{i}\right) \text { for } i=1,2, \ldots, t
$$

s_{t+1} divides $q_{1}^{f_{1}-1} q_{2}^{f_{2}-1} \cdots q_{t}^{f_{t}-1}$, and $q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{t}^{f_{t}}$ divides n.

For each factorization $s=s_{1} s_{2} \cdots s_{t+1}$, the number of such integers $n \leq x$ does not exceed

Using (3.1) of EGPS1990, this is at most

101 / 195

For each factorization $s=s_{1} s_{2} \cdots s_{t+1}$, the number of such integers $n \leq x$ does not exceed

$$
\sum_{\substack{q_{i} \leq x, q_{i} \equiv 1\left(\bmod s_{i}\right) \\(i=1,2, \ldots, t)}} \frac{x}{q_{1} q_{2} \cdots q_{t} s_{t+1}}=\frac{x}{s_{t+1}} \prod_{i=1}^{t}\left(\sum_{\substack{q_{i} \leq x, q_{i}=1\left(\bmod s_{i}\right) \\(i=1,2, \ldots, t)}} \frac{1}{q_{i}}\right) .
$$

Using (3.1) of EGPS1990, this is at most

For each factorization $s=s_{1} s_{2} \cdots s_{t+1}$, the number of such integers $n \leq x$ does not exceed

$$
\sum_{\substack{q_{i} \leq x, q_{i} \equiv 1\left(\bmod s_{i}\right) \\(i=1,2, \ldots, t)}} \frac{x}{q_{1} q_{2} \cdots q_{t} s_{t+1}}=\frac{x}{s_{t+1}} \prod_{i=1}^{t}\left(\sum_{\substack{q_{i} \leq x, q_{i}=1\left(\bmod s_{i}\right) \\(i=1,2, \ldots, t)}} \frac{1}{q_{i}}\right) .
$$

Using (3.1) of EGPS 1990, this is at most

For each factorization $s=s_{1} s_{2} \cdots s_{t+1}$, the number of such integers $n \leq x$ does not exceed

$$
\sum_{\substack{q_{i} \leq x, q_{i} \equiv 1\left(\bmod s_{i}\right) \\(i=1,2, \ldots, t)}} \frac{x}{q_{1} q_{2} \cdots q_{t} s_{t+1}}=\frac{x}{s_{t+1}} \prod_{i=1}^{t}\left(\sum_{\substack{q_{i} \leq x, q_{i}=1\left(\bmod s_{i}\right) \\(i=1,2, \ldots, t)}} \frac{1}{q_{i}}\right) .
$$

Using (3.1) of EGPS 1990, this is at most

$$
\frac{x\left(c_{1} \log \log x\right)^{t}}{s_{1} s_{2} \cdots s_{t} s_{t+1}}=\frac{x\left(c_{1} \log \log x\right)^{t}}{s} .
$$

Lemma 2

As x tends to infinity, we have

Lemma 2

As x tends to infinity, we have

$$
\begin{equation*}
\sum_{s \leq x} \frac{\tau(s)}{s}<\frac{(1+o(1)) e^{2 \sqrt{\log x}} \log ^{1 / 4} x}{2 \sqrt{\pi}} \tag{10}
\end{equation*}
$$

Lemma 2

As x tends to infinity, we have

$$
\begin{equation*}
\sum_{s \leq x} \frac{\tau(s)}{s}<\frac{(1+o(1)) e^{2 \sqrt{\log x}} \log ^{1 / 4} x}{2 \sqrt{\pi}} \tag{10}
\end{equation*}
$$

This immediately follows from Oppenheim's formula using partial summation.

Note: $\tau(s)$ itself may be fairly large.

Canfeld, Erdős, and Pomerance, 1983

108 / 195

Note: $\tau(s)$ itself may be fairly large.

Canfield, Erdős, and Pomerance, 1983
 $\tau(s)=s \exp (-(1+o(1)) \log s \log \log \log s / \log \log s)$ for highly factorable integers s, which are given in A033833.

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number,
n : be an r-nearly Lehmer number $\leq x$ which is composite.
Clearly, we can write $(n-1) / \varphi(n)=k / \ell$, where
k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.
$110 / 195$

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number ,
n : be an r-nearly Lehmer number $\leq x$ which is composite.
Clearly, we can write $(n-1) / \varphi(n)=k / 0$, where
k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n
are coprime and n is composite.
$111 / 195$

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number
n : be an r-nearly Lehmer number $\leq x$ which is composite.

k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

112 / 195

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number,
n : be an r-nearly Lehmer number $\leq x$ which is composite.

```
Clearly, we can write (n-1)/\varphi(n)=k/l, where
\(k\) and \(\ell\) : coprime integers,
\(\ell\) : a squarefree divisor of \(n-1\) with \(\omega(\ell) \leq r\)
We note that \(n\) must be odd and squarefree since \(\varphi(n)\) and \(n\) are coprime and \(n\) is composite.
```


Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number,
n : be an r-nearly Lehmer number $\leq x$ which is composite.
Clearly, we can write $(n-1) / \varphi(n)=k / \ell$, where
k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number,
n : be an r-nearly Lehmer number $\leq x$ which is composite.
Clearly, we can write $(n-1) / \varphi(n)=k / \ell$, where
k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n
are coprime and n is composite.

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number,
n : be an r-nearly Lehmer number $\leq x$ which is composite.
Clearly, we can write $(n-1) / \varphi(n)=k / \ell$, where
k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n
are coprime and n is composite.

Proof of main results

r : a positive integer or ∞,
x : a sufficiently large real number,
n : be an r-nearly Lehmer number $\leq x$ which is composite.
Clearly, we can write $(n-1) / \varphi(n)=k / \ell$, where
k and ℓ : coprime integers,
ℓ : a squarefree divisor of $n-1$ with $\omega(\ell) \leq r$
We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

Take an arbitrary divisor d of n and write $n=m d$. Since n is

squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right)
$$

where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p \| \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(d)} p(a \| b$ denotes that $a \mid b$ and $\operatorname{gcd}(a, b / a)=1)$.
We noie that $\ell_{2}^{2} \mid \varphi(d)$ and therefore $\ell_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

118/195

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right)
$$

where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p \| \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(d)} p(a \| b$ denotes that $a \mid b$ and $\operatorname{gcd}(a, b / a)=1)$.
We note that $l_{2}^{2} \mid \varphi(d)$ and therefore $l_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right)
$$

where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p \| \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(d)} p(a \| b$ denotes that $a \mid b$ and $\operatorname{gcd}(a, b / a)=1)$.
We note that $\ell_{2}^{2} \mid \varphi(d)$ and therefore $l_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

120/195

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide
Thus we have

$$
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right)
$$

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right) \tag{12}
\end{equation*}
$$

Where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p| | \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(}$
denotes that $a \mid b$ and $\operatorname{gcd}(a, b / a)=1)$.
We note that $\ell_{2}^{2} \mid \varphi(d)$ and therefore $\ell_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right) \tag{12}
\end{equation*}
$$

where $\ell_{0}=\ell_{1} \ell_{2}$
We note that $\ell_{2}^{2} \mid \varphi(d)$ and therefore $\ell_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right), \tag{12}
\end{equation*}
$$

where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p \| \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(d)} p$ We note that $\ell_{2}^{2} \mid \varphi(d)$ and therefore $\ell_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right), \tag{12}
\end{equation*}
$$

where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p \| \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(d)} p(a \| b$ denotes that $a \mid b$ and $\operatorname{gcd}(a, b / a)=1)$.

Take an arbitrary divisor d of n and write $n=m d$. Since n is squarefree, we have $\ell(m d-1)=k \varphi(n)=k \varphi(m) \varphi(d)$ and

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{0}}\right), \ell_{0}=\operatorname{gcd}(\ell, \varphi(d)) \tag{11}
\end{equation*}
$$

But, $\ell_{0}|\ell|(m d-1)$ and therefore both $\varphi(d) / \ell_{0}$ and ℓ_{0} divide $m d-1$.
Thus we have

$$
\begin{equation*}
m d \equiv 1\left(\bmod \frac{\varphi(d)}{\ell_{2}}\right), \tag{12}
\end{equation*}
$$

where $\ell_{0}=\ell_{1} \ell_{2}$ such that $\ell_{1}=\prod_{p \| \varphi(d)} p$ and $\ell_{2}=\prod_{p^{2} \mid \varphi(d)} p(a \| b$ denotes that $a \mid b$ and $\operatorname{gcd}(a, b / a)=1)$. We note that $\ell_{2}^{2} \mid \varphi(d)$ and therefore $\ell_{2} \leq \sqrt{\varphi(d)}<\sqrt{d}$.

* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is
an integer or $r=\infty$.
We cannot have $n=m p$ for a prime $p>L_{2}$: $m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!

If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$. Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$.

Thus, we observe that n has a divisor d in the range $L_{1} \leq d \leq L_{2}$.

* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.

We cannot have $n=m p$ for a prime $p>L_{2}$: $m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!

If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$. Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$. Thus, we observe that n has a divisor d in the range $L_{1} \leq d \leq L_{2}$.

* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:

contradiction!
If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$. Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$. Thus, we observe that n has a divisor d in the range
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation,
contradiction!
If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$. Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$. Thus, we observe that n has a divisor d in the range
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$,
contradiction!
If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$. Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$. Thus, we observe that n has a divisor d in the range
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$,

If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$. Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$. Thus, we observe that n has a divisor d in the range

* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!

then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$.
Thus, we observe that n has a divisor d in the range

134 / 195

* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!
* If n has no prime divisor $p \geq L_{1}$, then the smallest divisor Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$. Thus, we observe that n has a divisor d in the range
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!
* If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$.
then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$.
Thus, we observe that n has a divisor d in the range
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$:
$m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!
* If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$.
* Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$.
Thus, we observe that n has a divisor d in the range
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$: $m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!
* If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$.
* Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$.
* Now let $L_{1}>x^{1 / 3}$ and $L_{2}=L_{1}^{2}$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r=\infty$.
* We cannot have $n=m p$ for a prime $p>L_{2}$: $m \equiv 1\left(\bmod (p-1) / \ell_{2}\right)$ for some $\ell_{2}^{2} \mid(p-1)$ from the first observation, $m>\sqrt{p}$, and $n>p^{3 / 2}>L_{2}^{3 / 2}=L_{1}^{3}$, which is a contradiction!
* If n has no prime divisor $p \geq L_{1}$, then the smallest divisor $d \geq L_{1}$ of n must satisfy $L_{1} \leq d \leq L_{1}^{2}=L_{2}$.
* Clearly, if n has a prime factor p in the range $L_{1} \leq p \leq L_{2}$, then n has a divisor $d=p$ with $L_{1} \leq d \leq L_{2}$.
* Thus, we observe that n has a divisor d in the range $L_{1} \leq d \leq L_{2}$.

For each d, the number of integers $n=m d \leq x$ satisfying (12) is at most

We note that $\ell_{2} \leq \sqrt{\varphi(d)} \leq L_{1}$.
$d / \varphi(d)<\left(e^{\gamma}+o(1)\right) \log \log d \ll \log \log x$ from, for example, Theorem 328 of Hardy-Wright.
Hence,

For each d, the number of integers $n=m d \leq x$ satisfying (12) is at most $1+\left\lfloor\ell_{2} x /(d \varphi(d))\right\rfloor$.
We note that $\ell_{2} \leq \sqrt{\varphi(d)} \leq L_{1}$.
$d / \varphi(d)<\left(e^{\gamma}+o(1)\right) \log \log d \ll \log \log x$ from, for example,
Theorem 328 of Hardy-Wright.
Hence,

141 / 195

For each d, the number of integers $n=m d \leq x$ satisfying (12) is at most $1+\left\lfloor\ell_{2} x /(d \varphi(d))\right\rfloor$.
We note that $\ell_{2} \leq \sqrt{\varphi(d)} \leq L_{1}$.
$d / \varphi(d)<\left(e^{\gamma}+o(1)\right) \log \log d \ll \log \log x$ from, for example, Theorem 328 of Hardy-Wright.
Hence,

142 / 195

For each d, the number of integers $n=m d \leq x$ satisfying (12) is at most $1+\left\lfloor\ell_{2} x /(d \varphi(d))\right\rfloor$.
We note that $\ell_{2} \leq \sqrt{\varphi(d)} \leq L_{1}$.
$d / \varphi(d)<\left(e^{\gamma}+o(1)\right) \log \log d \ll \log \log x$ from, for example,
Theorem 328 of Hardy-Wright.
Hence,

143 / 195

For each d, the number of integers $n=m d \leq x$ satisfying (12) is at most $1+\left\lfloor\ell_{2} x /(d \varphi(d))\right\rfloor$.
We note that $\ell_{2} \leq \sqrt{\varphi(d)} \leq L_{1}$.
$d / \varphi(d)<\left(e^{\gamma}+o(1)\right) \log \log d \ll \log \log x$ from, for example,
Theorem 328 of Hardy-Wright.
Hence,

$$
\begin{align*}
\# U_{r}(x) & \leq \sum_{\ell_{2} \leq L_{1}} \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} \mid \varphi(d)}\left(1+\frac{\ell_{2} x}{d \varphi(d)}\right) \\
& \ll \sum_{\ell_{2} \leq L_{1}}\left(\# S\left(\ell_{2}^{2} ; L_{2}\right)+\sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} \mid \varphi(d)} \frac{\ell_{2} x \log \log x}{d^{2}}\right) . \tag{13}
\end{align*}
$$

In this case, $\tau\left(\ell_{2}^{2}\right) \leq \tau\left(\ell^{2}\right) \leq a_{r}$. By Lemma 1, we have

Taking $L_{1}=\left(c_{1} x \log x \log \log x\right)^{1 / 3}$, we obtain the theorem.

145 / 195

In this case, $\tau\left(\ell_{2}^{2}\right) \leq \tau\left(\ell^{2}\right) \leq a_{r}$. By Lemma 1, we have

Taking $L_{1}=\left(c_{1} x \log x \log \log x\right)^{1 / 3}$, we obtain the theorem.

146 / 195

In this case, $\tau\left(\ell_{2}^{2}\right) \leq \tau\left(\ell^{2}\right) \leq a_{r}$. By Lemma 1, we have

$$
\begin{align*}
\# U_{r}(x) & \ll a_{r} \sum_{\ell_{2} \leq L_{1}}\left(\frac{L_{2}\left(c_{1} \log \log x\right)^{\Omega\left(\ell_{2}\right)}}{\ell_{2}^{2}}+\frac{x\left(c_{1} \log \log x\right)^{\Omega\left(\ell_{2}\right)+1}}{L_{1} \ell_{2}}\right) \\
& \ll a_{r}\left(L_{2}\left(c_{1} \log \log x\right)^{2 r}+\frac{x(\log x)\left(c_{1} \log \log x\right)^{2 r+1}}{L_{1}}\right) \tag{14}
\end{align*}
$$

Taking $L_{1}=\left(c_{1} x \log x \log \log x\right)^{1 / 3}$, we obtain the theorem.

147 / 195

In this case, $\tau\left(\ell_{2}^{2}\right) \leq \tau\left(\ell^{2}\right) \leq a_{r}$. By Lemma 1, we have

$$
\begin{align*}
\# U_{r}(x) & \ll a_{r} \sum_{\ell_{2} \leq L_{1}}\left(\frac{L_{2}\left(c_{1} \log \log x\right)^{\Omega\left(\ell_{2}\right)}}{\ell_{2}^{2}}+\frac{x\left(c_{1} \log \log x\right)^{\Omega\left(\ell_{2}\right)+1}}{L_{1} \ell_{2}}\right) \\
& \ll a_{r}\left(L_{2}\left(c_{1} \log \log x\right)^{2 r}+\frac{x(\log x)\left(c_{1} \log \log x\right)^{2 r+1}}{L_{1}}\right) \tag{14}
\end{align*}
$$

Taking $L_{1}=\left(c_{1} x \log x \log \log x\right)^{1 / 3}$, we obtain the theorem.

$$
r=\infty
$$

Since $\ell_{2}^{2} \mid \varphi(d)$, we have $\varphi(d) / l_{2} \geq \sqrt{\varphi(d)} \gg(d / \log \log d)^{1 / 2}$ using Theorem 328 of Hardy and Wright again. Now, instead of (13), we obtain

149 / 195

Since $\ell_{2}^{2} \mid \varphi(d)$, we have $\varphi(d) / \ell_{2} \geq \sqrt{\varphi(d)} \gg(d / \log \log d)^{1 / 2}$ using Theorem 328 of Hardy and Wright again.
Now, instead of (13), we obtain

Since $\ell_{2}^{2} \mid \varphi(d)$, we have $\varphi(d) / \ell_{2} \geq \sqrt{\varphi(d)} \gg(d / \log \log d)^{1 / 2}$ using Theorem 328 of Hardy and Wright again.
Now, instead of (13), we obtain

151/ / 195

Since $\ell_{2}^{2} \mid \varphi(d)$, we have $\varphi(d) / \ell_{2} \geq \sqrt{\varphi(d)} \gg(d / \log \log d)^{1 / 2}$ using Theorem 328 of Hardy and Wright again.
Now, instead of (13), we obtain

$$
\begin{aligned}
& \# U_{\infty}(x) \ll \sum_{\ell_{2}<L_{1}}\left(\# S\left(\ell_{2}^{2} ; L_{2}\right)+\sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} \mid \varphi(d)} \frac{x(\log \log x)^{1 / 2}}{d^{3 / 2}}\right) \\
& \quad \ll \sum_{\ell_{2} \leq L_{1}} \frac{\tau\left(\ell_{2}^{2}\right)}{\ell_{2}^{2}}\left(L_{2}\left(c_{1} \log \log x\right)^{\Omega\left(\ell_{2}\right)}+\frac{x\left(c_{1} \log \log x\right)^{\Omega\left(\ell_{2}\right)+1 / 2}}{L_{1}^{1 / 2}}\right) .
\end{aligned}
$$

(15)

$r=\infty$ (auxiliary inequalities)

Since $\ell_{2}<L_{2}^{1 / 2}$,

$$
\begin{equation*}
\Omega\left(\ell_{2}^{2}\right)=2 \omega\left(\ell_{2}\right)<\frac{(1+o(1)) \log L_{2}}{\log \log x} \tag{16}
\end{equation*}
$$

By Lemma 2, we have

$r=\infty$ (auxiliary inequalities)

Since $\ell_{2}<L_{2}^{1 / 2}$,

$$
\begin{equation*}
\Omega\left(\ell_{2}^{2}\right)=2 \omega\left(\ell_{2}\right)<\frac{(1+o(1)) \log L_{2}}{\log \log x} \tag{16}
\end{equation*}
$$

By Lemma 2, we have

$r=\infty$ (auxiliary inequalities)

Since $\ell_{2}<L_{2}^{1 / 2}$,

$$
\begin{equation*}
\Omega\left(\ell_{2}^{2}\right)=2 \omega\left(\ell_{2}\right)<\frac{(1+o(1)) \log L_{2}}{\log \log x} . \tag{16}
\end{equation*}
$$

By Lemma 2, we have

$r=\infty$ (auxiliary inequalities)

Since $\ell_{2}<L_{2}^{1 / 2}$,

$$
\begin{equation*}
\Omega\left(\ell_{2}^{2}\right)=2 \omega\left(\ell_{2}\right)<\frac{(1+o(1)) \log L_{2}}{\log \log x} \tag{16}
\end{equation*}
$$

By Lemma 2, we have

$$
\begin{equation*}
\sum_{\ell_{2}<L_{1}} \frac{\tau\left(\ell_{2}^{2}\right)}{\ell_{2}^{2}} \leq \sum_{s<L_{2}} \frac{\tau(s)}{s} \ll e^{2 \sqrt{\log x}} \log ^{1 / 4} x \tag{17}
\end{equation*}
$$

$r=\infty$ (conclusion)

Inserting (16) and (17) into (15), we obtain

Now the theorem immediately follows taking $L_{1}=x^{2 / 5}$. This

 completes the proof.157 / 195

$r=\infty$ (conclusion)

Inserting (16) and (17) into (15), we obtain

$$
\begin{equation*}
\# U_{\infty}(x) \ll e^{(1+o(1)) \log L_{2} \log \log \log x / \log \log x}\left(L_{2}+\frac{x}{L_{1}^{1 / 2}}\right) \tag{18}
\end{equation*}
$$

Now the theorem immediately follows taking $L_{1}=x^{2 / 5}$. This completes the proof.

158 / 195

$r=\infty$ (conclusion)

Inserting (16) and (17) into (15), we obtain

$$
\begin{equation*}
\# U_{\infty}(x) \ll e^{(1+o(1)) \log L_{2} \log \log \log x / \log \log x}\left(L_{2}+\frac{x}{L_{1}^{1 / 2}}\right) \tag{18}
\end{equation*}
$$

Now the theorem immediately follows taking $L_{1}=x^{2 / 5}$.

$r=\infty$ (conclusion)

Inserting (16) and (17) into (15), we obtain

$$
\begin{equation*}
\# U_{\infty}(x) \ll e^{(1+o(1)) \log L_{2} \log \log \log x / \log \log x}\left(L_{2}+\frac{x}{L_{1}^{1 / 2}}\right) \tag{18}
\end{equation*}
$$

Now the theorem immediately follows taking $L_{1}=x^{2 / 5}$. This completes the proof.

Other problems

Among 38 almost Lehmer numbers below $2^{32}, 14$ numbers are Carmichael and the others are not. Among five 1-Nearly Lehmer numbers below 2^{32}, only 1729 and 3069196417 are Carmichael. Are these numbers infinitely often Carmichael / non-Carmichael?

Other problems

Among 38 almost Lehmer numbers below $2^{32}, 14$ numbers are Carmichael and the others are not. Among five 1-Nearly Lehmer numbers below 2^{32}, only 1729 and 3069196417 are Carmichael. Are these numbers infinitely often Carmichael /
non-Carmichael?

Other problems

Among 38 almost Lehmer numbers below $2^{32}, 14$ numbers are Carmichael and the others are not. Among five 1-Nearly Lehmer numbers below 2^{32}, only 1729 and 3069196417 are Carmichael. Are these numbers infinitely often Carmichael / non-Carmichael?

References (B-Ca)

Bender, 1974:
Edward A. Bender, Partitions of multisets, Disc. Math. 9
(1974), 301-311.

Burek and İmija, 2016:
Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15 (2016), 14631468.

CEP, 1983:
E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J.
Number Theory 17 (1983), 1-28.

164 / 195

References (B-Ca)

Bender, 1974:
Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301-311.

Burek and Żmija, 2016:
Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15 (2016), 14631468.
E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.

165 / 195

References (B-Ca)

Bender, 1974:
Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301-311.

Burek and Żmija, 2016:
Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15 (2016), 14631468.
E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.

166 / 195

References (B-Ca)

Bender, 1974:
Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301-311.

Burek and Żmija, 2016:
Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15 (2016), 14631468.

CEP, 1983:
E. R. Canfield, P. Erdős, and C. Pomerance, On a problem
of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28

References (B-Ca)

Bender, 1974:
Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301-311.

Burek and Żmija, 2016:
Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15 (2016), 14631468.

CEP, 1983:
E. R. Canfield, P. Erdős, and C. Pomerance, On a problem
of Oppenheim concerning "Factorisatio Numerorum", J. Number Theorv 17 (1983), 1-28

References (B-Ca)

Bender, 1974:
Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301-311.

Burek and Żmija, 2016:
Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory 15 (2016), 14631468.

CEP, 1983:
E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.

References (Co-G)

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Arch. Wisk. (3) 28 (1980), 177-185.

EGPS, 1990:

P. Erdös, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165204.

Grau and Oller-Marcén, 2012:
José María Grau and Antonio M. Oller-Marcén, On k -
Lehmer numbers, Integers 12 (2012), \#A37.

References (Co-G)

Cohen and Hagis 1980:
G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Arch. Wisk. (3) 28 (1980), 177-185.

EGPS, 1990:
P. Erdôs, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedinas of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165204.

Grau and Oller-Marcén, 2012:
José María Grau and Antonio M. Oller-Marcén, On k-
Lehmer numbers, Integers 12 (2012), \#A37.

References (Co-G)

Cohen and Hagis 1980:
G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Arch. Wisk. (3) 28 (1980), 177-185.

EGPS, 1990:
P. Erdôs, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165204.

Grau and Oller-Marcén, 2012:
José María Grau and Antonio M. Oller-Marcén, On k-
Lehmer numbers, Integers 12 (2012), \#A37.

References (Co-G)

Cohen and Hagis 1980:
G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Arch. Wisk. (3) 28 (1980), 177-185.

EGPS, 1990:
P. Erdös, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165204.

Grau and Oller-Marcén, 2012:
José María Grau and Antonio M. Oller-M
Lehmer numbers, Integers 12 (2012), \#A37.

References (Co-G)

Cohen and Hagis 1980:
G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Arch. Wisk. (3) 28 (1980), 177-185.

EGPS, 1990:
P. Erdös, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165204.

Grau and Oller-Marcén, 2012:
José María Grau and Antonio M. Oller-M
Lehmer numbers, Integers 12 (2012), \#A37.

References (Co-G)

Cohen and Hagis 1980:
G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Arch. Wisk. (3) 28 (1980), 177-185.

EGPS, 1990:
P. Erdös, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165204.

Grau and Oller-Marcén, 2012:
José María Grau and Antonio M. Oller-Marcén, On kLehmer numbers, Integers 12 (2012), \#A37.

References (H-L)

Hardy-Wright:
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:

D. H. Lehmer, On Euler's totient function, Bull. Amer.

Math. Soc. 38 (1932), 745-751.
Luca and Pomerance, 201 1:
Florian Luca and Carl Pomerance, On composite inte-
gers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3)
17 (2017), 13-27.

References (H-L)

Hardy-Wright:
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:
D. H. Lehmer, On Euler's totient function, Bull. Amer.

Math. Soc. 38 (1932), 745-751.
Luca and Pomerance, 2011 :
Florian Luca and Carl Pomerance, On composite inte-
gers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3)
17 (2011), 13-21.

References (H-L)

Hardy-Wright:
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:
D. H. Lehmer, On Euler's totient function, Bull. Amer.

Math. Soc. 38 (1932), 745-751.
Luca and Pomerance, 2011 :
Florian Luca and Carl Pomerance, On composite inte-
gers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3)
17 (2011), 13-21.

References (H-L)

Hardy-Wright:
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:
D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.

Luca and Pomerance, 2011:
gers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3)
17 (2011), 13-21.

References (H-L)

Hardy-Wright:
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:
D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.

Luca and Pomerance, 2011:
gers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3)
17 (2011), 13-21.

References (H-L)

Hardy-Wright:
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:
D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.

Luca and Pomerance, 2011:
Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3) 17 (2011), 13-21.

References (M-O)

McNew, 2013:
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 9 (2013), 1215-1224.

McNew and Wright, 2016:
Nathan McNew and Thomas Wright, Infinitude of k Lehmer numbers which are not Carmichael, Int. J. Number Theory 12 (2016), 1863-1869.

Oppenheim, 1927:
A. Oppenheim, On an arithmetic function II, J. London

Math. Soc. 2 (1927), 123-130.

References (M-O)

McNew, 2013:
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 9 (2013), 1215-1224.

McNew and Wright, 2016:

Lehmer numbers which are not Carmichael, Int. J. Number Theory 12 (2016), 1863-1869.

A. Oppenheim, On an arithmetic function II, J. London Math. Soc. 2 (1927), 123-130.

References (M-O)

McNew, 2013:
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 9 (2013), 1215-1224.

McNew and Wright, 2016:

Lehmer numbers which are not Carmichael, Int. J. Number Theory 12 (2016), 1863-1869.

Oppenheim, 1927:

A. Oppenheim, On an arithmetic function II, J. London

Math. Soc. 2 (1927), 123-130.

References (M-O)

McNew, 2013:
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 9 (2013), 1215-1224.

McNew and Wright, 2016:
Nathan McNew and Thomas Wright, Infinitude of k Lehmer numbers which are not Carmichael, Int. J. Number Theory 12 (2016), 1863-1869.

Oppenheim, 1927:
A. Oppenheim, On an arithmetic function II, J. London

Math. Soc. 2 (1927), 123-130.

References (M-O)

McNew, 2013:
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 9 (2013), 1215-1224.

McNew and Wright, 2016:
Nathan McNew and Thomas Wright, Infinitude of k Lehmer numbers which are not Carmichael, Int. J. Number Theory 12 (2016), 1863-1869.

Oppenheim, 1927:
A. Oppenheim, On an arithmetic function II, J. London

Math. Soc. 2 (1927), 123-130.

References (M-O)

McNew, 2013:
Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory 9 (2013), 1215-1224.
McNew and Wright, 2016:
Nathan McNew and Thomas Wright, Infinitude of k Lehmer numbers which are not Carmichael, Int. J. Number Theory 12 (2016), 1863-1869.

Oppenheim, 1927:
A. Oppenheim, On an arithmetic function II, J. London Math. Soc. 2 (1927), 123-130.

References (P-R)

Pinch's research page:
Richard G.E. Pinch, Mathematics research page,
http://www.chalcedon.demon.co.uk/rgep/rcam.
html
Pomerance, 1977:
Carl Pomerance, On composites n for which $\varphi(n) \mid(n-1)$,
II, Pacific J. Math. 69 (1977), 177-186.
Renze's notebook:
John Renze, Computational evidence for Lehmer's to-
tient conjecture
https://library.wolfram.com/infocenter/
MathSource/5483/

188 / 195

References (P-R)

Pinch's research page:
Richard G.E. Pinch, Mathematics research page,
http://www.chalcedon.demon.co.uk/rgep/rcam. html

Pomerance, 1977:
Carl Pomerance, On composites n for which $\varphi(n) \mid(n-1)$,
II, Pacific J. Math. 69 (1977), 177-186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's to-
tient conjecture,
httos://library.wolfram.com/infocenter/
MathSource/5483/

189 / 195

References (P-R)

Pinch's research page:
Richard G.E. Pinch, Mathematics research page,
http://www.chalcedon.demon.co.uk/rgep/rcam. html

Pomerance, 1977:
Carl Pomerance, On composites n for which $\varphi(n) \mid(n-1)$,
II, Pacific J. Math. 69 (1977), 177-186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's to-
tient conjecture,
httos://library.wolfram.com/infocenter/
MathSource/5483/

References (P-R)

Pinch's research page:
Richard G.E. Pinch, Mathematics research page,
http://www.chalcedon.demon.co.uk/rgep/rcam.
html
Pomerance, 1977:
Carl Pomerance, On composites n for which $\varphi(n) \mid(n-1)$, II, Pacific J. Math. 69 (1977), 177-186.

Renze's notebook:
John Renze, Computational evidence for Lehmer's to-
tient conjecture,
https://librarv.wolfram.com/infocenter/
MathSource/5483/

References (P-R)

Pinch's research page:
Richard G.E. Pinch, Mathematics research page,
http://www.chalcedon.demon.co.uk/rgep/rcam.
html
Pomerance, 1977:
Carl Pomerance, On composites n for which $\varphi(n) \mid(n-1)$, II, Pacific J. Math. 69 (1977), 177-186.

Renze's notebook:
John Renze, Computational evidence for Lehmer's to-
tient conjecture,
https://library.wolfram.com/infocenter/
MathSource/5483/

References (P-R)

Pinch's research page:
Richard G.E. Pinch, Mathematics research page,
http://www.chalcedon.demon.co.uk/rgep/rcam.
html
Pomerance, 1977:
Carl Pomerance, On composites n for which $\varphi(n) \mid(n-1)$, II, Pacific J. Math. 69 (1977), 177-186.

Renze's notebook:
John Renze, Computational evidence for Lehmer's totient conjecture,
https://library.wolfram.com/infocenter/
MathSource/5483/

MANY TH」ANKઈ よOR, YOUR ATTLNTION

194 / 195
Tomohiro Yamada
Center for Japanese language and culture
Osaka University
562-8558
8-1-1, Aomatanihigashi, Minoo, Osaka
Japan
e-mail: tyamada1093@gmail.com

