Almost Lehmer numbers

Tomohiro Yamada (CJLC, Osaka University)

Nov. 27. 2020 (revised in Dec. 7. 2020)

2 Preliminary Estimates

Proof of theorems

Let

 $\varphi(n)$: the Euler totient of n, the number of positive integers $d \le n-1$ coprime to n.

Clearly, $\varphi(n) = n - 1$ if and only if n is prime.

Conjecture (Lehmer, 1932)

There exists no composite n such that

$$\varphi(n) \mid (n-1). \tag{1}$$

Let

 $\varphi(n)$: the Euler totient of n, the number of positive integers $d \le n-1$ coprime to n.

Clearly, $\varphi(n) = n - 1$ if and only if n is prime.

Conjecture (Lehmer, 1932)

There exists no composite n such that

$$\varphi(n) \mid (n-1). \tag{1}$$

Let

 $\varphi(n)$: the Euler totient of n, the number of positive integers $d \le n-1$ coprime to n.

Clearly, $\varphi(n) = n - 1$ if and only if n is prime.

Conjecture (Lehmer, 1932)

There exists no composite n such that

$$\varphi(n) \mid (n-1).$$
 (1)

5/195

Lehmer, 1932

- If n is composite and $\varphi(n)$ divides n-1, then n must
- (a) be odd,
- (b) be squarefree, and
- (c) have at least seven prime factors.

Lehmer, 1932

If n is composite and $\varphi(n)$ divides n-1, then n must

- (a) be odd,
- (b) be squarefree, and
- (c) have at least seven prime factors.

Lehmer, 1932

If n is composite and $\varphi(n)$ divides n-1, then n must

(a) be odd,

(b) be squarefree, and

(c) have at least seven prime factors.

Lehmer, 1932

If n is composite and $\varphi(n)$ divides n-1, then n must

- (a) be odd,
- (b) be squarefree, and

(c) have at least seven prime factors.

Lehmer, 1932

If n is composite and $\varphi(n)$ divides n-1, then n must

- (a) be odd,
- (b) be squarefree, and
- (c) have at least seven prime factors.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$.

Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$. Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$. Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$. Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$.

Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$.

Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$.

Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$.

Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Cohen and Hagis, 1980: $\omega(n) \ge 14$ and $n > 10^{20}$.

Renze's notebook: $\omega(n) \ge 15$ and $n > 10^{26}$.

Pinch claims at his research page: $n > 10^{30}$.

Moreover, letting V(x) be the number of composites $n \le x$ such that $\varphi(n) \mid (n-1)$,

Pomerance, 1977: $V(x) = O(x^{1/2} \log^{3/4} x)$ and $n \le r^{2^r}$ if $2 \le \omega(n) \le r$ additionally.

Weakening the condition $\varphi(n) \mid (n-1)$, Grau and Oller-Marcén, 2012 introduced the *k*-Lehmer property: $\varphi(n) \mid (n-1)^k$

The first few composite 2-Lehmer numbers:

 $561, 1105, 1729, 2465, \ldots$

(sequence A173703 in OEIS).

```
Weakening the condition \varphi(n) \mid (n-1), Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: \varphi(n) \mid (n-1)^k
```

The first few composite 2-Lehmer numbers:

 $561, 1105, 1729, 2465, \ldots$

(sequence A173703 in OEIS).

Weakening the condition $\varphi(n) \mid (n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid (n-1)^k$ The first few composite 2-Lehmer numbers:

 $561, 1105, 1729, 2465, \ldots$

(sequence <u>A173703</u> in OEIS).

Weakening the condition $\varphi(n) \mid (n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid (n-1)^k$ The first few composite 2-Lehmer numbers:

 $561, 1105, 1729, 2465, \ldots$

(sequence <u>A173703</u> in OEIS).

Weakening the condition $\varphi(n) \mid (n-1)$, Grau and Oller-Marcén, 2012 introduced the k-Lehmer property: $\varphi(n) \mid (n-1)^k$ The first few composite 2-Lehmer numbers:

 $561, 1105, 1729, 2465, \ldots$

(sequence A173703 in OEIS).

McNew, 2013

For each k, the number of k-Lehmer composites is $O(x^{1-1/(4k-1)})$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp(-(1+o(1))\log x \log \log \log x/\log \log x)$.

McNew and Wright, 2016

McNew, 2013

For each k, the number of k-Lehmer composites is $O(x^{1-1/(4k-1)})$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp(-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

McNew, 2013

For each k, the number of k-Lehmer composites is $O(x^{1-1/(4k-1)})$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp(-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

McNew, 2013

For each k, the number of k-Lehmer composites is $O(x^{1-1/(4k-1)})$ and the number of integers which are k-Lehmer composites for some k is at most $x \exp(-(1+o(1)) \log x \log \log \log x / \log \log x)$.

McNew and Wright, 2016

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

- (a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1, and
- (b) an *r*-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

- (a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1, and
- (b) an *r*-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

- (a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1, and
- (b) an *r*-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

We call an integer n to be

(a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1, and

(b) an *r*-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.

Now we would like to discuss intermediate properties between the 1-Lehmer (that is, ordinary Lehmer) property and 2-Lehmer property.

Almost Lehmer numbers

- (a) an almost Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1, and
- (b) an *r*-nearly Lehmer number if $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞-nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

given in <u>A337316</u>.

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2^{32} (further instances are given in the discussion of <u>A338998</u>).

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

given in <u>A337316</u>.

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2^{32} (further instances are given in the discussion of <u>A338998</u>).

Instances

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

given in <u>A337316</u>.

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2³² (further instances are given in the discussion of <u>A338998</u>).
- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2³² (further instances are given in the discussion of <u>A338998</u>).

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2³² (further instances are given in the discussion of <u>A338998</u>).

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2³² (further instances are given in the discussion of <u>A338998</u>).

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2³² (further instances are given in the discussion of <u>A338998</u>).

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2^{32} (further instances are given in the discussion of <u>A338998</u>).

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2^{32} (further instances are given in the discussion of <u>A338998</u>).

- The ordinary Lehmer property is equivalent to the 0-nearly Lehmer property and an almost Lehmer numbers can be regarded as ∞ -nearly Lehmer numbers.
- The first few almost Lehmer composites are

 $1729, 12801, 247105, 1224721, 2704801, 5079361, 8355841, \ldots,$

- There exist exactly 38 almost Lehmer composites below 2^{32} .
- There exist only five 1-nearly Lehmer composites 1729, 12801, 5079361, 34479361, and 3069196417 below 2^{32} (further instances are given in the discussion of <u>A338998</u>).

- U_r : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.
- Thus, U_{∞} denotes the set of almost Lehmer composite numbers.
- $S(x) = \{n \le x, n \in S\}$:

- U_r: the set of composites n for which φ(n) divides ℓ(n-1) for some squarefree divisor ℓ of n − 1 with ω(ℓ) ≤ r.
- Thus, U_∞ denotes the set of almost Lehmer composite numbers.
- $S(x) = \{n \le x, n \in S\}$:

- U_r : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.
- Thus, U_∞ denotes the set of almost Lehmer composite numbers.
- $S(x) = \{n \leq x, n \in S\}$:

- U_r : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.
- Thus, U_∞ denotes the set of almost Lehmer composite numbers.
- $S(x) = \{n \leq x, n \in S\}$:

- U_r : the set of composites n for which $\varphi(n)$ divides $\ell(n-1)$ for some squarefree divisor ℓ of n-1 with $\omega(\ell) \leq r$.
- Thus, U_∞ denotes the set of almost Lehmer composite numbers.

•
$$S(x) = \{n \le x, n \in S\}$$
:

Theorem 1 (Y., submitted)

Let a_r be the number of partitions of the multiset $\{1, 1, 2, 2, ..., r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_1 such that, for each $r \ge 1$,

$$#U_r(x) < ca_r(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}.$$
(2)

Theorem 2 (Y., submitted)

$$#U_{\infty}(x) < x^{4/5} \exp\left(\left(\frac{4}{5} + o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right),\tag{3}$$

where $o(1) \to 0$ as $x \to \infty$.

Theorem 1 (Y., submitted)

Let a_r be the number of partitions of the multiset $\{1, 1, 2, 2, ..., r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_1 such that, for each $r \ge 1$,

 $#U_r(x) < ca_r(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}.$

(2)

Theorem 2 (Y., submitted)

$$#U_{\infty}(x) < x^{4/5} \exp\left(\left(\frac{4}{5} + o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right),\tag{3}$$

where $o(1) \to 0$ as $x \to \infty$.

Theorem 1 (Y., submitted)

Let a_r be the number of partitions of the multiset $\{1, 1, 2, 2, ..., r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_1 such that, for each $r \ge 1$,

 $#U_r(x) < ca_r(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}.$

Theorem 2 (Y., submitted)

$$#U_{\infty}(x) < x^{4/5} \exp\left(\left(\frac{4}{5} + o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right),\tag{3}$$

where $o(1) \to 0$ as $x \to \infty$.

Theorem 1 (Y., submitted)

Let a_r be the number of partitions of the multiset $\{1, 1, 2, 2, ..., r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_1 such that, for each $r \ge 1$,

$$#U_r(x) < ca_r(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}.$$

Theorem 2 (Y., submitted)

$$\#U_{\infty}(x) < x^{4/5} \exp\left(\left(\frac{4}{5} + o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right),\tag{3}$$

where $o(1) \to 0$ as $x \to \infty$.

Theorem 1 (Y., submitted)

Let a_r be the number of partitions of the multiset $\{1, 1, 2, 2, ..., r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_1 such that, for each $r \ge 1$,

$$#U_r(x) < ca_r(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}.$$
(2)

Theorem 2 (Y., submitted)

$$#U_{\infty}(x) < x^{4/5} \exp\left(\left(\frac{4}{5} + o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right),$$
(3)

where $o(1) \to 0$ as $x \to \infty$.

Theorem 1 (Y., submitted)

Let a_r be the number of partitions of the multiset $\{1, 1, 2, 2, ..., r, r\}$ of r integers repeated twice. Then, there exist two absolute constants c and c_1 such that, for each $r \ge 1$,

$$#U_r(x) < ca_r (x \log x)^{2/3} (c_1 \log \log x)^{2r+2/3}.$$
(2)

Theorem 2 (Y., submitted)

$$#U_{\infty}(x) < x^{4/5} \exp\left(\left(\frac{4}{5} + o(1)\right) \frac{\log x \log \log \log x}{\log \log x}\right),\tag{3}$$

where $o(1) \to 0$ as $x \to \infty$.

 $2, 9, 66, 712, 10457, 198091, 4659138, 132315780, \ldots$

given in <u>A020555</u> and Bender's asymptotic formula (Bender, 1974) yields that

$$\log a_r < 2r \left(\log(2r) - \log\log(2r) - 1 - \frac{\log 2}{2} + o(1) \right)$$
(4)

$2, 9, 66, 712, 10457, 198091, 4659138, 132315780, \ldots$

given in <u>A020555</u> and Bender's asymptotic formula (Bender, 1974) yields that

$$\log a_r < 2r \left(\log(2r) - \log\log(2r) - 1 - \frac{\log 2}{2} + o(1) \right)$$
(4)

 $2, 9, 66, 712, 10457, 198091, 4659138, 132315780, \ldots$

given in <u>A020555</u> and Bender's asymptotic formula (Bender, 1974) yields that

$$\log a_r < 2r \left(\log(2r) - \log \log(2r) - 1 - \frac{\log 2}{2} + o(1) \right)$$
(4)

 $2, 9, 66, 712, 10457, 198091, 4659138, 132315780, \ldots$

given in <u>A020555</u> and Bender's asymptotic formula (Bender, 1974) yields that

$$\log a_r < 2r \left(\log(2r) - \log \log(2r) - 1 - \frac{\log 2}{2} + o(1) \right)$$
(4)

 $#U_1(x) < 2c(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}$ (5)

and

$$\#U_r(x) < c \left(\frac{(e\sqrt{2} + o_r(1))r}{\log r}\right)^{2r} (x\log x)^{2/3} (c_1\log\log x)^{2r+2/3}, \quad (6)$$

$$#U_1(x) < 2c(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}$$
(5)

and

$$\#U_r(x) < c \left(\frac{(e\sqrt{2} + o_r(1))r}{\log r}\right)^{2r} (x\log x)^{2/3} (c_1\log\log x)^{2r+2/3}, \quad (6)$$

$$#U_1(x) < 2c(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}$$
(5)

and

$$\#U_r(x) < c \left(\frac{(e\sqrt{2} + o_r(1))r}{\log r}\right)^{2r} (x\log x)^{2/3} (c_1\log\log x)^{2r+2/3}, \quad \text{(6)}$$

$$#U_1(x) < 2c(x\log x)^{2/3}(c_1\log\log x)^{2r+2/3}$$
(5)

and

$$\#U_r(x) < c \left(\frac{(e\sqrt{2} + o_r(1))r}{\log r}\right)^{2r} (x\log x)^{2/3} (c_1\log\log x)^{2r+2/3}, \quad \text{(6)}$$

Our estimates depend on numbers of multiplicative partitions of integers, which will be discussed in the next section.

This dependence, together with factorial growth of a_r , prevents our method from showing that $\#U_{\infty}(x) < x^{2/3+o(1)}$.

Our estimates depend on numbers of multiplicative partitions of integers, which will be discussed in the next section. This dependence, together with factorial growth of a_r , prevents our method from showing that $\#U_{\infty}(x) < x^{2/3+o(1)}$.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Conjecture

There exist infinitely many almost Lehmer composite numbers.

Preliminary Lemmas

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \leq s_2 \leq \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

If $s = p_1^2 p_2^2$, then there exist nine factorizations: $\{p_1^2 p_2^2\}$, $\{p_1^2 p_2, p_2\}$, $\{p_1 p_2^2, p_1\}$, $\{p_1^2, p_2^2\}$, $\{p_1^2, p_2, p_2\}$, $\{p_2^2, p_1, p_1\}$, $\{p_1 p_2, p_1 p_2\}$, $\{p_1 p_2, p_1, p_2\}$, $\{p_1, p_1, p_2, p_2\}$.
Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \leq s_2 \leq \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \leq s_2 \leq \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \leq s_2 \leq \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \leq s_2 \leq \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Let $\tau(s)$ be the number of multiplicative partitions / factorizations of $s = s_1 s_2 \cdots s_r$ with $s_1 \le s_2 \le \cdots s_r$. The values of $\tau(s)$ for positive integers s are given in <u>A001055</u>.

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{\leq x,q\equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log s}{s}$$

with some absolute constant c_1 , where q runs over all primes satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$

86 / 195

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{\leq x,q\equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log s}{s}$$

with some absolute constant c_1 , where q runs over all primes satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$

87 / 195

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{q \le x, q \equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log x}{s}$$

with some absolute constant c_1 , where q runs over all primes satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$

88 / 195

(T)

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{q \le x, q \equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log s}{s}$$

with some absolute constant c_1 , where q runs over all primes

satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$

x

(T)

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{q \le x, q \equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log x}{s}$$

with some absolute constant c_1 , where q runs over all primes satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$

90 / 195

()

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{q \le x, q \equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log x}{s}$$

with some absolute constant c_1 , where q runs over all primes satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$

91 / 195

()

Erdős, Granville, Pomerance, and Spiro, 1990, (3.1)

$$\sum_{q \le x, q \equiv 1 \pmod{s}} \frac{1}{q} < \frac{c_1 \log \log x}{s}$$

with some absolute constant c_1 , where q runs over all primes satisfying $q \le x, q \equiv 1 \pmod{s}$.

and Lemma 2 uses

Oppenheim, 1927

$$\sum_{s \le x} \tau(s) = \frac{(1+o(1))xe^{2\sqrt{\log x}}}{2\sqrt{\pi}\log^{3/4} x}.$$
(8)

(7)

For each integer $s \ge 1$, let S(s; x) denote the set of positive integers $n \le x$ such that s divides $\varphi(n)$. Then

$$S(s;x) \le \frac{\tau(s)x(c_1\log\log x)^{\Omega(s)}}{s}$$

where c_1 is an absolute constant.

For each integer $s \ge 1$, let S(s; x) denote the set of positive integers $n \le x$ such that s divides $\varphi(n)$. Then

$$S(s;x) \le \frac{\tau(s)x(c_1\log\log x)^{\Omega(s)}}{s}$$

where c_1 is an absolute constant.

For each integer $s \ge 1$, let S(s; x) denote the set of positive integers $n \le x$ such that s divides $\varphi(n)$. Then

$$S(s;x) \le \frac{\tau(s)x(c_1\log\log x)^{\Omega(s)}}{s},$$

where c_1 is an absolute constant.

(9)

For each integer $s \ge 1$, let S(s; x) denote the set of positive integers $n \le x$ such that s divides $\varphi(n)$. Then

$$S(s;x) \le \frac{\tau(s)x(c_1\log\log x)^{\Omega(s)}}{s},$$

where c_1 is an absolute constant.

(9)

We observe that if $s | \varphi(n)$, then we can take a factorization of $s = s_1 s_2 \cdots s_{t+1}$ with $1 < s_1 < s_2 < \cdots s_t$ such that:

 $q_i \equiv 1 \pmod{s_i}$ for $i = 1, 2, \dots, t$, s_{t+1} divides $q_1^{f_1-1}q_2^{f_2-1}\cdots q_t^{f_t-1}$, and $q_1^{f_1}q_2^{f_2}\cdots q_t^{f_t}$ divides n. We observe that if $s | \varphi(n)$, then we can take a factorization of $s = s_1 s_2 \cdots s_{t+1}$ with $1 < s_1 < s_2 < \cdots s_t$ such that:

$$q_i \equiv 1 \pmod{s_i}$$
 for $i = 1, 2, \dots, t$,
 s_{t+1} divides $q_1^{f_1 - 1} q_2^{f_2 - 1} \cdots q_t^{f_t - 1}$, and
 $q_1^{f_1} q_2^{f_2} \cdots q_t^{f_t}$ divides n .

We observe that if $s \mid \varphi(n)$, then we can take a factorization of $s = s_1 s_2 \cdots s_{t+1}$ with $1 < s_1 < s_2 < \cdots s_t$ such that: $q_i \equiv 1 \pmod{s_i}$ for $i = 1, 2, \dots, t$, s_{t+1} divides $q_1^{f_1-1}q_2^{f_2-1} \cdots q_t^{f_t-1}$, and $q_1^{f_1}q_2^{f_2} \cdots q_t^{f_t}$ divides n. We observe that if $s \mid \varphi(n)$, then we can take a factorization of $s = s_1 s_2 \cdots s_{t+1}$ with $1 < s_1 < s_2 < \cdots s_t$ such that: $q_i \equiv 1 \pmod{s_i}$ for $i = 1, 2, \dots, t$, s_{t+1} divides $q_1^{f_1-1}q_2^{f_2-1} \cdots q_t^{f_t-1}$, and $q_1^{f_1}q_2^{f_2} \cdots q_t^{f_t}$ divides n.

100 / 195

Using (3.1) of EGPS1990, this is at most

 $\frac{x(c_1\log\log x)^t}{s_1s_2\cdots s_ts_{t+1}} = \frac{x(c_1\log\log x)^t}{s}$

101 / 195

$$\sum_{\substack{q_i \le x, \\ q_i \equiv 1 \pmod{s_i} \\ (i=1,2,\dots,t)}} \frac{x}{q_1 q_2 \cdots q_t s_{t+1}} = \frac{x}{s_{t+1}} \prod_{i=1}^t \left(\sum_{\substack{q_i \le x, \\ q_i \equiv 1 \pmod{s_i} \\ (i=1,2,\dots,t)}} \frac{1}{q_i} \right)$$

Using (3.1) of EGPS1990, this is at most

$$\frac{x(c_1\log\log x)^t}{s_1s_2\cdots s_ts_{t+1}} = \frac{x(c_1\log\log x)^t}{s}$$

102/195

٠

$$\sum_{\substack{q_i \le x, \\ q_i \equiv 1 \pmod{s_i} \\ (i=1,2,\dots,t)}} \frac{x}{q_1 q_2 \cdots q_t s_{t+1}} = \frac{x}{s_{t+1}} \prod_{i=1}^t \left(\sum_{\substack{q_i \le x, \\ q_i \equiv 1 \pmod{s_i} \\ (i=1,2,\dots,t)}} \frac{1}{q_i} \right)$$

Using (3.1) of EGPS1990, this is at most

 $\frac{x(c_1\log\log x)^t}{s_1s_2\cdots s_ts_{t+1}} = \frac{x(c_1\log\log x)^t}{s}$

103 / 195

٠

$$\sum_{\substack{q_i \le x, \\ q_i \equiv 1 \pmod{s_i} \\ (i=1,2,\dots,t)}} \frac{x}{q_1 q_2 \cdots q_t s_{t+1}} = \frac{x}{s_{t+1}} \prod_{i=1}^t \left(\sum_{\substack{q_i \le x, \\ q_i \equiv 1 \pmod{s_i} \\ (i=1,2,\dots,t)}} \frac{1}{q_i} \right).$$

Using (3.1) of EGPS1990, this is at most

$$\frac{x(c_1 \log \log x)^t}{s_1 s_2 \cdots s_t s_{t+1}} = \frac{x(c_1 \log \log x)^t}{s}$$

٠

104 / 195

This immediately follows from Oppenheim's formula using partial summation.

As x tends to infinity, we have

$$\sum_{s \le x} \frac{\tau(s)}{s} < \frac{(1+o(1))e^{2\sqrt{\log x}}\log^{1/4}x}{2\sqrt{\pi}}.$$

This immediately follows from Oppenheim's formula using partial summation.

(10)

As x tends to infinity, we have

$$\sum_{s \le x} \frac{\tau(s)}{s} < \frac{(1+o(1))e^{2\sqrt{\log x}}\log^{1/4}x}{2\sqrt{\pi}}.$$
 (10)

This immediately follows from Oppenheim's formula using partial summation.

Note: $\tau(s)$ itself may be fairly large.

Canfield, Erdős, and Pomerance, 1983

 $\tau(s) = s \exp(-(1 + o(1)) \log s \log \log \log s / \log \log s)$ for highly factorable integers s, which are given in <u>A033833</u>.

108 / 195
Note: $\tau(s)$ itself may be fairly large.

Canfield, Erdős, and Pomerance, 1983

 $\tau(s) = s \exp(-(1 + o(1)) \log s \log \log \log s / \log \log s)$ for highly

factorable integers s, which are given in A033833.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an r-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number .

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

r: a positive integer or ∞ ,

x: a sufficiently large real number ,

n: be an *r*-nearly Lehmer number $\leq x$ which is composite.

Clearly, we can write $(n-1)/\varphi(n) = k/\ell$, where

k and ℓ : coprime integers,

 ℓ : a squarefree divisor of n-1 with $\omega(\ell) \leq r$

We note that n must be odd and squarefree since $\varphi(n)$ and n are coprime and n is composite.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_2}},$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md-1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md-1. Thus we have

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_2}},$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_2}},$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \left(\mod \frac{\varphi(d)}{\ell_2} \right),$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_2}},$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \left(\mod \frac{\varphi(d)}{\ell_2} \right),$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid | b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \left(\mod \frac{\varphi(d)}{\ell_2} \right),$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \left(\mod \frac{\varphi(d)}{\ell_2} \right),$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid \mid \varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ $(a \mid \mid b)$ denotes that $a \mid b$ and gcd(a, b/a) = 1. We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md - 1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md - 1. Thus we have

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_2}},$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid \mid \varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

$$md \equiv 1 \pmod{\frac{\varphi(d)}{\ell_0}}, \ell_0 = \gcd(\ell, \varphi(d)).$$
 (11)

But, $\ell_0 \mid \ell \mid (md-1)$ and therefore both $\varphi(d)/\ell_0$ and ℓ_0 divide md-1.

Thus we have

$$md \equiv 1 \left(\mod \frac{\varphi(d)}{\ell_2} \right),$$
 (12)

where $\ell_0 = \ell_1 \ell_2$ such that $\ell_1 = \prod_{p \mid |\varphi(d)} p$ and $\ell_2 = \prod_{p^2 \mid \varphi(d)} p$ ($a \mid \mid b$ denotes that $a \mid b$ and gcd(a, b/a) = 1). We note that $\ell_2^2 \mid \varphi(d)$ and therefore $\ell_2 \leq \sqrt{\varphi(d)} < \sqrt{d}$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$:

 $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!

- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If *n* has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of *n* must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

- * Now let $L_1 > x^{1/3}$ and $L_2 = L_1^2$ be real numbers which will be chosen later in different manners according to whether r is an integer or $r = \infty$.
- * We cannot have n = mp for a prime $p > L_2$: $m \equiv 1 \pmod{(p-1)/\ell_2}$ for some $\ell_2^2 \mid (p-1)$ from the first observation, $m > \sqrt{p}$, and $n > p^{3/2} > L_2^{3/2} = L_1^3$, which is a contradiction!
- * If n has no prime divisor $p \ge L_1$, then the smallest divisor $d \ge L_1$ of n must satisfy $L_1 \le d \le L_1^2 = L_2$.
- * Clearly, if n has a prime factor p in the range $L_1 \le p \le L_2$, then n has a divisor d = p with $L_1 \le d \le L_2$.
- * Thus, we observe that n has a divisor d in the range $L_1 \leq d \leq L_2$.

For each d, the number of integers $n = md \le x$ satisfying (12) is at most $1 + \lfloor \ell_2 x/(d\varphi(d)) \rfloor$.

We note that $\ell_2 \leq \sqrt{\varphi(d)} \leq L_1$.

 $d/\varphi(d) < (e^\gamma + o(1))\log\log d \ll \log\log x \text{ from, for example,}$ Theorem 328 of Hardy-Wright.

Hence,

$$\#U_{r}(x) \leq \sum_{\ell_{2} \leq L_{1}} \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \left(1 + \frac{\ell_{2}x}{d\varphi(d)} \right)$$

$$\ll \sum_{\ell_{2} \leq L_{1}} \left(\#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \frac{\ell_{2}x \log \log x}{d^{2}} \right).$$
(13)

For each d, the number of integers $n = md \le x$ satisfying (12) is at most $1 + \lfloor \ell_2 x / (d\varphi(d)) \rfloor$.

We note that $\ell_2 \leq \sqrt{\varphi(d)} \leq L_1$.

 $d/\varphi(d) < (e^\gamma + o(1))\log\log d \ll \log\log x \text{ from, for example,}$ Theorem 328 of Hardy-Wright.

Hence,

$$\#U_{r}(x) \leq \sum_{\ell_{2} \leq L_{1}} \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \left(1 + \frac{\ell_{2}x}{d\varphi(d)} \right)$$

$$\ll \sum_{\ell_{2} \leq L_{1}} \left(\#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \frac{\ell_{2}x \log \log x}{d^{2}} \right).$$
(13)

For each d, the number of integers $n = md \le x$ satisfying (12) is at most $1 + \lfloor \ell_2 x/(d\varphi(d)) \rfloor$.

We note that $\ell_2 \leq \sqrt{\varphi(d)} \leq L_1$.

 $d/\varphi(d) < (e^\gamma + o(1))\log\log d \ll \log\log x \text{ from, for example,}$ Theorem 328 of Hardy-Wright.

Hence,

$$\#U_{r}(x) \leq \sum_{\ell_{2} \leq L_{1}} \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \left(1 + \frac{\ell_{2}x}{d\varphi(d)} \right)$$

$$\ll \sum_{\ell_{2} \leq L_{1}} \left(\#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \frac{\ell_{2}x \log \log x}{d^{2}} \right).$$
(13)

For each d, the number of integers $n = md \le x$ satisfying (12) is at most $1 + \lfloor \ell_2 x / (d\varphi(d)) \rfloor$.

We note that $\ell_2 \leq \sqrt{\varphi(d)} \leq L_1$.

 $d/\varphi(d) < (e^\gamma + o(1))\log\log d \ll \log\log x \text{ from, for example,}$ Theorem 328 of Hardy-Wright.

Hence

$$\#U_{r}(x) \leq \sum_{\ell_{2} \leq L_{1}} \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \left(1 + \frac{\ell_{2}x}{d\varphi(d)} \right)$$

$$\ll \sum_{\ell_{2} \leq L_{1}} \left(\#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \frac{\ell_{2}x \log \log x}{d^{2}} \right).$$
(13)

For each d, the number of integers $n = md \le x$ satisfying (12) is at most $1 + \lfloor \ell_2 x / (d\varphi(d)) \rfloor$.

We note that $\ell_2 \leq \sqrt{\varphi(d)} \leq L_1$.

 $d/\varphi(d) < (e^\gamma + o(1))\log\log d \ll \log\log x \text{ from, for example,}$ Theorem 328 of Hardy-Wright.

Hence,

$$#U_{r}(x) \leq \sum_{\ell_{2} \leq L_{1}} \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \left(1 + \frac{\ell_{2}x}{d\varphi(d)} \right)$$

$$\ll \sum_{\ell_{2} \leq L_{1}} \left(\#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} | \varphi(d)} \frac{\ell_{2}x \log \log x}{d^{2}} \right).$$
(13)
In this case, $au(\ell_2^2) \leq au(\ell^2) \leq a_r$. By Lemma 1, we have

$$#U_{r}(x) \ll a_{r} \sum_{\ell_{2} \leq L_{1}} \left(\frac{L_{2}(c_{1} \log \log x)^{\Omega(\ell_{2})}}{\ell_{2}^{2}} + \frac{x(c_{1} \log \log x)^{\Omega(\ell_{2})+1}}{L_{1}\ell_{2}} \right)$$
$$\ll a_{r} \left(L_{2}(c_{1} \log \log x)^{2r} + \frac{x(\log x)(c_{1} \log \log x)^{2r+1}}{L_{1}} \right).$$
(14)

Taking $L_1 = (c_1 x \log x \log \log x)^{1/3}$, we obtain the theorem.

In this case, $au(\ell_2^2) \leq au(\ell^2) \leq a_r$. By Lemma 1, we have

$$#U_r(x) \ll a_r \sum_{\ell_2 \le L_1} \left(\frac{L_2(c_1 \log \log x)^{\Omega(\ell_2)}}{\ell_2^2} + \frac{x(c_1 \log \log x)^{\Omega(\ell_2)+1}}{L_1 \ell_2} \right)$$
$$\ll a_r \left(L_2(c_1 \log \log x)^{2r} + \frac{x(\log x)(c_1 \log \log x)^{2r+1}}{L_1} \right).$$
(14)

Taking $L_1 = (c_1 x \log x \log \log x)^{1/3}$, we obtain the theorem.

In this case, $au(\ell_2^2) \leq au(\ell^2) \leq a_r$. By Lemma 1, we have

$$#U_r(x) \ll a_r \sum_{\ell_2 \le L_1} \left(\frac{L_2(c_1 \log \log x)^{\Omega(\ell_2)}}{\ell_2^2} + \frac{x(c_1 \log \log x)^{\Omega(\ell_2)+1}}{L_1 \ell_2} \right)$$
$$\ll a_r \left(L_2(c_1 \log \log x)^{2r} + \frac{x(\log x)(c_1 \log \log x)^{2r+1}}{L_1} \right).$$
(14)

Taking $L_1 = (c_1 x \log x \log \log x)^{1/3}$, we obtain the theorem.

In this case, $au(\ell_2^2) \leq au(\ell^2) \leq a_r$. By Lemma 1, we have

$$#U_r(x) \ll a_r \sum_{\ell_2 \le L_1} \left(\frac{L_2(c_1 \log \log x)^{\Omega(\ell_2)}}{\ell_2^2} + \frac{x(c_1 \log \log x)^{\Omega(\ell_2)+1}}{L_1 \ell_2} \right)$$
$$\ll a_r \left(L_2(c_1 \log \log x)^{2r} + \frac{x(\log x)(c_1 \log \log x)^{2r+1}}{L_1} \right).$$
(14)

Taking $L_1 = (c_1 x \log x \log \log x)^{1/3}$, we obtain the theorem.

$r = \infty$

Since $\ell_2^2 | \varphi(d)$, we have $\varphi(d)/\ell_2 \ge \sqrt{\varphi(d)} \gg (d/\log \log d)^{1/2}$ using Theorem 328 of Hardy and Wright again. Now, instead of (13), we obtain

$$\#U_{\infty}(x) \ll \sum_{\ell_{2} < L_{1}} \left(\#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \le d \le L_{2}, \ell_{2}^{2} | \varphi(d)} \frac{x(\log \log x)^{1/2}}{d^{3/2}} \right)$$
$$\ll \sum_{\ell_{2} \le L_{1}} \frac{\tau(\ell_{2}^{2})}{\ell_{2}^{2}} \left(L_{2}(c_{1} \log \log x)^{\Omega(\ell_{2})} + \frac{x(c_{1} \log \log x)^{\Omega(\ell_{2})+1/2}}{L_{1}^{1/2}} \right).$$
(15)

$r = \infty$

Since $\ell_2^2 \mid \varphi(d)$, we have $\varphi(d)/\ell_2 \ge \sqrt{\varphi(d)} \gg (d/\log \log d)^{1/2}$ using Theorem 328 of Hardy and Wright again.

Now, instead of (13), we obtain

$$#U_{\infty}(x) \ll \sum_{\ell_{2} \leq L_{1}} \left(#S(\ell_{2}^{2}; L_{2}) + \sum_{L_{1} \leq d \leq L_{2}, \ell_{2}^{2} \mid \varphi(d)} \frac{x(\log \log x)^{1/2}}{d^{3/2}} \right)$$
$$\ll \sum_{\ell_{2} \leq L_{1}} \frac{\tau(\ell_{2}^{2})}{\ell_{2}^{2}} \left(L_{2}(c_{1} \log \log x)^{\Omega(\ell_{2})} + \frac{x(c_{1} \log \log x)^{\Omega(\ell_{2})+1/2}}{L_{1}^{1/2}} \right).$$
(15)

$r = \infty$

Since $\ell_2^2 | \varphi(d)$, we have $\varphi(d)/\ell_2 \ge \sqrt{\varphi(d)} \gg (d/\log \log d)^{1/2}$ using Theorem 328 of Hardy and Wright again. Now, instead of (13), we obtain

$$r = \infty$$

Since $\ell_2^2 | \varphi(d)$, we have $\varphi(d)/\ell_2 \ge \sqrt{\varphi(d)} \gg (d/\log \log d)^{1/2}$ using Theorem 328 of Hardy and Wright again. Now, instead of (13), we obtain

$$#U_{\infty}(x) \ll \sum_{\ell_2 < L_1} \left(#S(\ell_2^2; L_2) + \sum_{L_1 \le d \le L_2, \ell_2^2 | \varphi(d)} \frac{x(\log \log x)^{1/2}}{d^{3/2}} \right)$$
$$\ll \sum_{\ell_2 \le L_1} \frac{\tau(\ell_2^2)}{\ell_2^2} \left(L_2(c_1 \log \log x)^{\Omega(\ell_2)} + \frac{x(c_1 \log \log x)^{\Omega(\ell_2) + 1/2}}{L_1^{1/2}} \right).$$
(15)

Since $\ell_2 < L_2^{1/2}$,

$$\Omega(\ell_2^2) = 2\omega(\ell_2) < \frac{(1+o(1))\log L_2}{\log\log x}.$$
(16)

By Lemma 2, we have

$$\sum_{\ell_2 < L_1} \frac{\tau(\ell_2^2)}{\ell_2^2} \le \sum_{s < L_2} \frac{\tau(s)}{s} \ll e^{2\sqrt{\log x}} \log^{1/4} x.$$
(17)

Since $\ell_2 < L_2^{1/2}$,

$$\Omega(\ell_2^2) = 2\omega(\ell_2) < \frac{(1+o(1))\log L_2}{\log\log x}.$$
(16)

By Lemma 2, we have

$$\sum_{\ell_2 < L_1} \frac{\tau(\ell_2^2)}{\ell_2^2} \le \sum_{s < L_2} \frac{\tau(s)}{s} \ll e^{2\sqrt{\log x}} \log^{1/4} x.$$
(17)

Since $\ell_2 < L_2^{1/2}$,

$$\Omega(\ell_2^2) = 2\omega(\ell_2) < \frac{(1+o(1))\log L_2}{\log\log x}.$$
(16)

By Lemma 2, we have

$$\sum_{\ell_2 < L_1} \frac{\tau(\ell_2^2)}{\ell_2^2} \le \sum_{s < L_2} \frac{\tau(s)}{s} \ll e^{2\sqrt{\log x}} \log^{1/4} x.$$
(17)

Since $\ell_2 < L_2^{1/2}$,

$$\Omega(\ell_2^2) = 2\omega(\ell_2) < \frac{(1+o(1))\log L_2}{\log\log x}.$$
(16)

By Lemma 2, we have

$$\sum_{\ell_2 < L_1} \frac{\tau(\ell_2^2)}{\ell_2^2} \le \sum_{s < L_2} \frac{\tau(s)}{s} \ll e^{2\sqrt{\log x}} \log^{1/4} x.$$
(17)

Inserting (16) and (17) into (15), we obtain

 $#U_{\infty}(x) \ll e^{(1+o(1))\log L_2\log\log\log x/\log\log x}$

$$\left(L_2 + \frac{x}{L_1^{1/2}}\right).$$
 (18)

Now the theorem immediately follows taking $L_1 = x^{2/5}$. This completes the proof.

Inserting (16) and (17) into (15), we obtain

$$\#U_{\infty}(x) \ll e^{(1+o(1))\log L_2 \log \log \log x/\log \log x} \left(L_2 + \frac{x}{L_1^{1/2}}\right).$$
 (18)

Now the theorem immediately follows taking $L_1 = x^{2/5}$. This completes the proof.

Inserting (16) and (17) into (15), we obtain

$$\#U_{\infty}(x) \ll e^{(1+o(1))\log L_2 \log \log \log x/\log \log x} \left(L_2 + \frac{x}{L_1^{1/2}}\right).$$
(18)

Now the theorem immediately follows taking $L_1 = x^{2/5}$. This completes the proof.

Inserting (16) and (17) into (15), we obtain

$$\#U_{\infty}(x) \ll e^{(1+o(1))\log L_2 \log \log \log x/\log \log x} \left(L_2 + \frac{x}{L_1^{1/2}}\right).$$
 (18)

Now the theorem immediately follows taking $L_1 = x^{2/5}$. This completes the proof.

Other problems

Among 38 almost Lehmer numbers below 2^{32} , 14 numbers are Carmichael and the others are not. Among five 1-Nearly Lehmer numbers below 2^{32} , only 1729 and 3069196417 are Carmichael. Are these numbers infinitely often Carmichael / non-Carmichael?

Other problems

Among 38 almost Lehmer numbers below 2^{32} , 14 numbers are Carmichael and the others are not. Among five 1-Nearly Lehmer numbers below 2^{32} , only 1729 and 3069196417 are Carmichael. Are these numbers infinitely often Carmichael / non-Carmichael?

Other problems

Among 38 almost Lehmer numbers below 2^{32} , 14 numbers are Carmichael and the others are not. Among five 1-Nearly Lehmer numbers below 2^{32} , only 1729 and 3069196417 are Carmichael. Are these numbers infinitely often Carmichael / non-Carmichael?

Bender, 1974:

Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301–311.

Burek and Żmija, 2016:

Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory **15** (2016), 1463– 1468.

CEP, 1983:

E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory **17** (1983), 1–28.

Bender, 1974: Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301–311.

Burek and Żmija, 2016:

Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory **15** (2016), 1463– 1468.

CEP, 1983:

E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory **17** (1983), 1–28.

Bender, 1974: Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301–311.

Burek and Żmija, 2016:

Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory **15** (2016), 1463– 1468.

CEP, 1983:

E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory **17** (1983), 1–28.

Bender, 1974:

Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301–311.

Burek and Żmija, 2016:

Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory **15** (2016), 1463– 1468.

CEP, 1983:

E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory **17** (1983), 1–28.

Bender, 1974:

Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301–311.

Burek and Żmija, 2016:

Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory **15** (2016), 1463– 1468.

CEP, 1983:

E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory **17** (1983), 1–28.

Bender, 1974:

Edward A. Bender, Partitions of multisets, Disc. Math. 9 (1974), 301–311.

Burek and Żmija, 2016:

Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, Int. J. Number Theory **15** (2016), 1463– 1468.

CEP, 1983:

E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory **17** (1983), 1–28.

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n - 1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.

EGPS, 1990:

P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165– 204.

Grau and Oller-Marcén, 2012:

José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers **12** (2012), #A37.

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n-1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.

EGPS, 1990:

P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165– 204.

Grau and Oller-Marcén, 2012:

José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers **12** (2012), #A37.

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n-1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.

EGPS, 1990:

P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165– 204.

Grau and Oller-Marcén, 2012:

José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers **12** (2012), #A37.

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n-1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.

EGPS, 1990:

P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165– 204.

Grau and Oller-Marcén, 2012:

José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers 12 (2012), #A37.

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n-1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.

EGPS, 1990:

P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165– 204.

Grau and Oller-Marcén, 2012:

José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers 12 (2012), #A37.

Cohen and Hagis 1980:

G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n-1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.

EGPS, 1990:

P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic Number Theory, Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser, 1990, 165– 204.

Grau and Oller-Marcén, 2012:

José María Grau and Antonio M. Oller-Marcén, On k-Lehmer numbers, Integers **12** (2012), #A37.

Hardy-Wright:

Hardy-Wright:

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:

D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. **38** (1932), 745–751.

Luca and Pomerance, 2011: Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n - 1$, Bol. Soc. Mat. Mexicana (3) 17 (2011), 13–21.

Hardy-Wright:

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:

D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. **38** (1932), 745–751.

Luca and Pomerance, 2011: Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n - 1$, Bol. Soc. Mat. Mexicana (3) 17 (2011), 13–21.

Hardy-Wright:

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:

D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. **38** (1932), 745–751.

Luca and Pomerance, 2011:

Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n - 1$, Bol. Soc. Mat. Mexicana (3) 17 (2011), 13–21.

Hardy-Wright:

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:

D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. **38** (1932), 745–751.

Luca and Pomerance, 2011:

Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n - 1$, Bol. Soc. Mat. Mexicana (3) 17 (2011), 13–21.
References (H-L)

Hardy-Wright:

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, revised by D. R. Heath-Brown and J. H. Silverman, Oxford University Press, 2008.

Lehmer, 1932:

D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. **38** (1932), 745–751.

Luca and Pomerance, 2011: Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n - 1$, Bol. Soc. Mat. Mexicana (3) **17** (2011), 13–21.

McNew, 2013:

Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory **9** (2013), 1215–1224.

McNew and Wright, 2016:

Nathan McNew and Thomas Wright, Infinitude of *k*-Lehmer numbers which are not Carmichael, Int. J. Number Theory **12** (2016), 1863–1869.

Oppenheim, 1927:

A. Oppenheim, On an arithmetic function II, J. London Math. Soc. **2** (1927), 123–130.

McNew, 2013: Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory **9** (2013), 1215–1224.

McNew and Wright, 2016:

Nathan McNew and Thomas Wright, Infinitude of *k*-Lehmer numbers which are not Carmichael, Int. J. Number Theory **12** (2016), 1863–1869.

Oppenheim, 1927:

McNew, 2013: Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory **9** (2013), 1215–1224.

McNew and Wright, 2016:

Nathan McNew and Thomas Wright, Infinitude of *k*-Lehmer numbers which are not Carmichael, Int. J. Number Theory **12** (2016), 1863–1869.

Oppenheim, 1927:

McNew, 2013: Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory **9** (2013), 1215–1224.

McNew and Wright, 2016:

Nathan McNew and Thomas Wright, Infinitude of *k*-Lehmer numbers which are not Carmichael, Int. J. Number Theory **12** (2016), 1863–1869.

Oppenheim, 1927:

McNew, 2013: Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory **9** (2013), 1215–1224.

McNew and Wright, 2016:

Nathan McNew and Thomas Wright, Infinitude of *k*-Lehmer numbers which are not Carmichael, Int. J. Number Theory **12** (2016), 1863–1869.

Oppenheim, 1927:

McNew, 2013: Nathan McNew, Radically weakening the Lehmer and Carmichael conditions, Int. J. Number Theory **9** (2013), 1215–1224.

McNew and Wright, 2016:

Nathan McNew and Thomas Wright, Infinitude of *k*-Lehmer numbers which are not Carmichael, Int. J. Number Theory **12** (2016), 1863–1869.

Oppenheim, 1927:

Pinch's research page:

Richard G.E. Pinch, Mathematics research page, http://www.chalcedon.demon.co.uk/rgep/rcam. html

Pomerance, 1977:

Carl Pomerance, On composites n for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's totient conjecture,

https://library.wolfram.com/infocenter/

MathSource/5483/

Pinch's research page: Richard G.E. Pinch, Mathematics research page, http://www.chalcedon.demon.co.uk/rgep/rcam. html

Pomerance, 1977:

Carl Pomerance, On composites n for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's totient conjecture,

https://library.wolfram.com/infocenter/
MathGauges (5402)

MathSource/5483/

Pinch's research page: Richard G.E. Pinch, Mathematics research page, http://www.chalcedon.demon.co.uk/rgep/rcam. html

Pomerance, 1977:

Carl Pomerance, On composites n for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's totient conjecture,

https://library.wolfram.com/infocenter/
MathCourse(5482/

MathSource/5483/

Pinch's research page:

Richard G.E. Pinch, Mathematics research page,

http://www.chalcedon.demon.co.uk/rgep/rcam.

html

Pomerance, 1977:

Carl Pomerance, On composites n for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's totient conjecture,

https://library.wolfram.com/infocenter/ MathSource/5483/

Pinch's research page:

Richard G.E. Pinch, Mathematics research page,

http://www.chalcedon.demon.co.uk/rgep/rcam.

html

Pomerance, 1977:

Carl Pomerance, On composites *n* for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's totient conjecture,

https://library.wolfram.com/infocenter/ MathSource/5483/

Pinch's research page:

Richard G.E. Pinch, Mathematics research page,

http://www.chalcedon.demon.co.uk/rgep/rcam.

html

Pomerance, 1977:

Carl Pomerance, On composites n for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.

Renze's notebook:

John Renze, Computational evidence for Lehmer's totient conjecture,

https://library.wolfram.com/infocenter/

MathSource/5483/

MANY THANKS FOR YOUR ATTENTION

Tomohiro Yamada Center for Japanese language and culture Osaka University 562-8558 8-1-1, Aomatanihigashi, Minoo, Osaka Japan e-mail: tyamada1093@gmail.com